Suppr超能文献

从时间序列代谢动力学中揭示体内生化模式。

Uncovering in vivo biochemical patterns from time-series metabolic dynamics.

机构信息

Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America.

Department of Genetics, University of Georgia, Athens, GA, United States of America.

出版信息

PLoS One. 2022 May 12;17(5):e0268394. doi: 10.1371/journal.pone.0268394. eCollection 2022.

Abstract

System biology relies on holistic biomolecule measurements, and untangling biochemical networks requires time-series metabolomics profiling. With current metabolomic approaches, time-series measurements can be taken for hundreds of metabolic features, which decode underlying metabolic regulation. Such a metabolomic dataset is untargeted with most features unannotated and inaccessible to statistical analysis and computational modeling. The high dimensionality of the metabolic space also causes mechanistic modeling to be rather cumbersome computationally. We implemented a faster exploratory workflow to visualize and extract chemical and biochemical dependencies. Time-series metabolic features (about 300 for each dataset) were extracted by Ridge Tracking-based Extract (RTExtract) on measurements from continuous in vivo monitoring of metabolism by NMR (CIVM-NMR) in Neurospora crassa under different conditions. The metabolic profiles were then smoothed and projected into lower dimensions, enabling a comparison of metabolic trends in the cultures. Next, we expanded incomplete metabolite annotation using a correlation network. Lastly, we uncovered meaningful metabolic clusters by estimating dependencies between smoothed metabolic profiles. We thus sidestepped the processes of time-consuming mechanistic modeling, difficult global optimization, and labor-intensive annotation. Multiple clusters guided insights into central energy metabolism and membrane synthesis. Dense connections with glucose 1-phosphate indicated its central position in metabolism in N. crassa. Our approach was benchmarked on simulated random network dynamics and provides a novel exploratory approach to analyzing high-dimensional metabolic dynamics.

摘要

系统生物学依赖于整体生物分子测量,而理清生化网络则需要进行时间序列代谢组学分析。通过当前的代谢组学方法,可以对数百个代谢特征进行时间序列测量,从而解码潜在的代谢调控。这样的代谢组学数据集是无目标的,大多数特征未注释,无法进行统计分析和计算建模。代谢空间的高维性也使得机械建模在计算上相当繁琐。我们实施了一种更快的探索性工作流程来可视化和提取化学和生化相关性。通过对不同条件下连续体内代谢 NMR(CIVM-NMR)监测的代谢测量值进行基于脊跟踪的提取(RTExtract),提取了时间序列代谢特征(每个数据集约 300 个)。然后对代谢谱进行平滑和投影到较低维度,从而能够比较培养物中的代谢趋势。接下来,我们使用相关网络扩展了不完整的代谢物注释。最后,我们通过估计平滑代谢谱之间的依赖性来发现有意义的代谢簇。因此,我们避免了耗时的机械建模、困难的全局优化和劳动密集型注释过程。多个簇引导我们深入了解中心能量代谢和膜合成。与葡萄糖 1-磷酸的密集连接表明其在 N. crassa 代谢中的中心地位。我们的方法在模拟随机网络动力学方面进行了基准测试,为分析高维代谢动力学提供了一种新颖的探索性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16c3/9098013/962cb37d4ad9/pone.0268394.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验