Suppr超能文献

苜蓿中华根瘤菌磷酸丙糖异构酶基因的特性分析

Characterization of Sinorhizobium meliloti triose phosphate isomerase genes.

作者信息

Poysti Nathan J, Oresnik Ivan J

机构信息

Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada.

出版信息

J Bacteriol. 2007 May;189(9):3445-51. doi: 10.1128/JB.01707-06. Epub 2007 Mar 2.

Abstract

A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.

摘要

分离得到了苜蓿中华根瘤菌(Sinorhizobium meliloti)的Tn5突变菌株,其在假定的磷酸丙糖异构酶(TPI)编码基因tpiA(系统标识符SMc01023)中存在插入。tpiA突变体在鼠李糖上的生长速度比野生型慢,并且不能以甘油作为唯一碳源生长。苜蓿中华根瘤菌野生型Rm1021的基因组包含第二个预测的TPI编码基因tpiB(SMc01614)。我们构建了突变体并证实这两个基因都编码功能性TPI酶。tpiA似乎是组成型表达的,并为中心代谢提供主要的TPI活性。已证明tpiB是利用赤藓糖醇生长所必需的。TpiB活性由利用赤藓糖醇生长诱导;然而,tpiA突变体中存在的TpiB活性基础水平允许利用糖异生碳源生长。虽然tpiA突变体可以被tpiB互补,但就赤藓糖醇分解代谢而言,tpiA不能替代tpiB中的突变。单独的tpiA或tpiB突变不会导致共生缺陷;然而,tpiA和tpiB两者的突变都会导致共生固氮减少

相似文献

1
Characterization of Sinorhizobium meliloti triose phosphate isomerase genes.
J Bacteriol. 2007 May;189(9):3445-51. doi: 10.1128/JB.01707-06. Epub 2007 Mar 2.
2
A locus necessary for the transport and catabolism of erythritol in Sinorhizobium meliloti.
Microbiology (Reading). 2010 Oct;156(Pt 10):2970-2981. doi: 10.1099/mic.0.041905-0. Epub 2010 Jul 29.
3
Formate-dependent autotrophic growth in Sinorhizobium meliloti.
J Bacteriol. 2008 Oct;190(19):6409-18. doi: 10.1128/JB.00757-08. Epub 2008 Jul 25.
4
Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00436-17. Print 2018 Jan 15.
8
Cloning and characterization of the pyruvate carboxylase from Sinorhizobium meliloti Rm1021.
Arch Microbiol. 2001 Nov;176(5):355-63. doi: 10.1007/s002030100336.

引用本文的文献

2
Inability to Catabolize Rhamnose by Rm1021 Affects Competition for Nodule Occupancy.
Microorganisms. 2022 Mar 29;10(4):732. doi: 10.3390/microorganisms10040732.
4
Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00436-17. Print 2018 Jan 15.
5
A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in .
Genetics. 2017 Nov;207(3):961-974. doi: 10.1534/genetics.117.300212. Epub 2017 Aug 29.
8
Evaluation of the effects of erythritol on gene expression in Brucella abortus.
PLoS One. 2012;7(12):e50876. doi: 10.1371/journal.pone.0050876. Epub 2012 Dec 14.
9
Characterization of the twin-arginine transport secretome in Sinorhizobium meliloti and evidence for host-dependent phenotypes.
Appl Environ Microbiol. 2012 Oct;78(19):7141-4. doi: 10.1128/AEM.01458-12. Epub 2012 Jul 27.
10
Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti.
J Bacteriol. 2012 Sep;194(18):5044-53. doi: 10.1128/JB.00982-12. Epub 2012 Jul 13.

本文引用的文献

1
Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism.
Microbiology (Reading). 2007 Mar;153(Pt 3):727-736. doi: 10.1099/mic.0.29148-0.
2
Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17933-8. doi: 10.1073/pnas.0606673103. Epub 2006 Nov 13.
3
Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.
Microbiology (Reading). 2006 Jul;152(Pt 7):2061-2074. doi: 10.1099/mic.0.28938-0.
4
Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021.
Microbiology (Reading). 2006 Jul;152(Pt 7):2049-2059. doi: 10.1099/mic.0.28937-0.
5
Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae.
J Biotechnol. 2006 Oct 1;125(4):462-73. doi: 10.1016/j.jbiotec.2006.03.034. Epub 2006 May 11.
6
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Genome Biol. 2006;7(4):R34. doi: 10.1186/gb-2006-7-4-r34. Epub 2006 Apr 26.
7
The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3834-9. doi: 10.1073/pnas.0508502103. Epub 2006 Feb 27.
8
Whole-genome analyses of speciation events in pathogenic Brucellae.
Infect Immun. 2005 Dec;73(12):8353-61. doi: 10.1128/IAI.73.12.8353-8361.2005.
10
Experimental identification and quantification of glucose metabolism in seven bacterial species.
J Bacteriol. 2005 Mar;187(5):1581-90. doi: 10.1128/JB.187.5.1581-1590.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验