Moore D K, Jerrett M, Mack W J, Künzli N
University of Southern California, Los Angeles, CA, USA.
J Environ Monit. 2007 Mar;9(3):246-52. doi: 10.1039/b615795e. Epub 2007 Jan 19.
Land use regression (LUR) models have been used successfully for predicting local variation in traffic pollution, but few studies have explored this method for deriving fine particle exposure surfaces. The primary purpose of this method is to develop a LUR model for predicting fine particle or PM(2.5) mass over the five county metropolitan statistical area (MSA) of Los Angeles. PM(2.5) includes all particles with diameter less than or equal to 2.5 microns. In the Los Angeles MSA, 23 monitors of PM(2.5) were available in the year 2000. This study uses GIS to integrate data regarding land use, transportation and physical geography to derive a PM(2.5) dataset covering Los Angeles. Multiple linear regression was used to create the model for predicting the PM(2.5) surface. Our parsimonious model explained 69% of the variance in PM(2.5) with three predictors: (1) traffic density within 300 m, (2) industrial land area within 5000 m, and (3) government land area within 5000 m of the monitoring site. These results suggest the LUR method can refine exposure models for epidemiologic studies in a North American context.
土地利用回归(LUR)模型已成功用于预测交通污染的局部变化,但很少有研究探索用这种方法推导细颗粒物暴露表面。该方法的主要目的是开发一个LUR模型,用于预测洛杉矶五县大都市统计区(MSA)的细颗粒物或PM(2.5)质量。PM(2.5)包括所有直径小于或等于2.5微米的颗粒物。在2000年,洛杉矶大都市统计区有23个PM(2.5)监测点。本研究使用地理信息系统(GIS)整合土地利用、交通和自然地理数据,以得出覆盖洛杉矶的PM(2.5)数据集。采用多元线性回归创建预测PM(2.5)表面的模型。我们的简约模型用三个预测变量解释了PM(2.5)中69%的方差:(1)300米范围内的交通密度,(2)5000米范围内的工业用地面积,以及(3)监测点5000米范围内的政府用地面积。这些结果表明,LUR方法可以完善北美背景下流行病学研究的暴露模型。