Suppr超能文献

挖掘公共数据集以在精细空间分辨率下对城市内部颗粒物浓度进行建模。

Mining Public Datasets for Modeling Intra-City PM Concentrations at a Fine Spatial Resolution.

作者信息

Lin Yijun, Stripelis Dimitrios, Chiang Yao-Yi, Ambite José Luis, Habre Rima, Pan Fan, Eckel Sandrah P

机构信息

Spatial Sciences Institute, University of Southern California.

Information Sciences Institute, University of Southern California.

出版信息

Proc ACM SIGSPATIAL Int Conf Adv Inf. 2017 Nov;2017. doi: 10.1145/3139958.3140013.

Abstract

Air quality models are important for studying the impact of air pollutant on health conditions at a fine spatiotemporal scale. Existing work typically relies on area-specific, expert-selected attributes of pollution emissions (e,g., transportation) and dispersion (e.g., meteorology) for building the model for each combination of study areas, pollutant types, and spatiotemporal scales. In this paper, we present a data mining approach that utilizes publicly available OpenStreetMap (OSM) data to automatically generate an air quality model for the concentrations of fine particulate matter less than 2.5 m in aerodynamic diameter at various temporal scales. Our experiment shows that our (domain-) expert-free model could generate accurate PM concentration predictions, which can be used to improve air quality models that traditionally rely on expert-selected input. Our approach also quantifies the impact on air quality from a variety of geographic features (i.e., how various types of geographic features such as parking lots and commercial buildings affect air quality and from what distance) representing mobile, stationary and area natural and anthropogenic air pollution sources. This approach is particularly important for enabling the construction of context-specific spatiotemporal models of air pollution, allowing investigations of the impact of air pollution exposures on sensitive populations such as children with asthma at scale.

摘要

空气质量模型对于在精细的时空尺度上研究空气污染物对健康状况的影响至关重要。现有工作通常依赖于特定区域、专家选定的污染排放(例如交通)和扩散(例如气象)属性,为每个研究区域、污染物类型和时空尺度的组合构建模型。在本文中,我们提出了一种数据挖掘方法,该方法利用公开可用的开放街道地图(OSM)数据,自动生成不同时间尺度下空气动力学直径小于2.5微米的细颗粒物浓度的空气质量模型。我们的实验表明,我们的无(领域)专家模型能够生成准确的PM浓度预测,可用于改进传统上依赖专家选定输入的空气质量模型。我们的方法还量化了各种地理特征对空气质量的影响(即停车场和商业建筑等各种类型的地理特征如何影响空气质量以及从多远的距离),这些地理特征代表了移动、固定以及区域自然和人为空气污染来源。这种方法对于构建特定环境的空气污染时空模型尤为重要,能够在大规模上研究空气污染暴露对敏感人群(如哮喘儿童)的影响。

相似文献

1
Mining Public Datasets for Modeling Intra-City PM Concentrations at a Fine Spatial Resolution.
Proc ACM SIGSPATIAL Int Conf Adv Inf. 2017 Nov;2017. doi: 10.1145/3139958.3140013.
4
9
Personal and ambient exposures to air toxics in Camden, New Jersey.
Res Rep Health Eff Inst. 2011 Aug(160):3-127; discussion 129-51.
10
The London low emission zone baseline study.
Res Rep Health Eff Inst. 2011 Nov(163):3-79.

引用本文的文献

1
Patterns Discovery Dataset for Particulate Matter (PM) Pollution Trends in Japan.
Sci Data. 2025 Jun 16;12(1):1009. doi: 10.1038/s41597-025-05195-2.
2
Opportunities and shortcomings of AI for spatial epidemiology and health disparities research on aging and the life course.
Health Place. 2024 Sep;89:103323. doi: 10.1016/j.healthplace.2024.103323. Epub 2024 Jul 23.
3
Prediction Tool on Fine Particle Pollutants and Air Quality for Environmental Engineering.
SN Comput Sci. 2022;3(3):184. doi: 10.1007/s42979-022-01068-2. Epub 2022 Mar 7.
4
Modelling the impact of MAUP on environmental drivers for Schistosoma japonicum prevalence.
Parasit Vectors. 2020 Mar 2;13(1):112. doi: 10.1186/s13071-020-3987-5.
5
Integration of Remote Sensing and Social Sensing Data in a Deep Learning Framework for Hourly Urban PM Mapping.
Int J Environ Res Public Health. 2019 Oct 24;16(21):4102. doi: 10.3390/ijerph16214102.
6
Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea.
Environ Int. 2019 Oct;131:105022. doi: 10.1016/j.envint.2019.105022. Epub 2019 Jul 27.

本文引用的文献

1
A Scalable Data Integration and Analysis Architecture for Sensor Data of Pediatric Asthma.
Proc Int Conf Data Eng. 2017 Apr;2017:1407-1408. doi: 10.1109/ICDE.2017.198. Epub 2017 May 18.
3
Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution.
Environ Sci Technol. 2017 Sep 5;51(17):9920-9929. doi: 10.1021/acs.est.7b01864. Epub 2017 Aug 11.
6
The impact of PM2.5 on the human respiratory system.
J Thorac Dis. 2016 Jan;8(1):E69-74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
7
Accounting for spatial effects in land use regression for urban air pollution modeling.
Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:9-21. doi: 10.1016/j.sste.2015.06.002. Epub 2015 Jul 2.
8
The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis.
Environ Sci Pollut Res Int. 2016 Jan;23(1):843-50. doi: 10.1007/s11356-015-5321-x. Epub 2015 Sep 8.
9
Outdoor air pollution and asthma.
Lancet. 2014 May 3;383(9928):1581-92. doi: 10.1016/S0140-6736(14)60617-6.
10
Prediction of 24-hour-average PM(2.5) concentrations using a hidden Markov model with different emission distributions in Northern California.
Sci Total Environ. 2013 Jan 15;443:93-103. doi: 10.1016/j.scitotenv.2012.10.070. Epub 2012 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验