Lin Yijun, Stripelis Dimitrios, Chiang Yao-Yi, Ambite José Luis, Habre Rima, Pan Fan, Eckel Sandrah P
Spatial Sciences Institute, University of Southern California.
Information Sciences Institute, University of Southern California.
Proc ACM SIGSPATIAL Int Conf Adv Inf. 2017 Nov;2017. doi: 10.1145/3139958.3140013.
Air quality models are important for studying the impact of air pollutant on health conditions at a fine spatiotemporal scale. Existing work typically relies on area-specific, expert-selected attributes of pollution emissions (e,g., transportation) and dispersion (e.g., meteorology) for building the model for each combination of study areas, pollutant types, and spatiotemporal scales. In this paper, we present a data mining approach that utilizes publicly available OpenStreetMap (OSM) data to automatically generate an air quality model for the concentrations of fine particulate matter less than 2.5 m in aerodynamic diameter at various temporal scales. Our experiment shows that our (domain-) expert-free model could generate accurate PM concentration predictions, which can be used to improve air quality models that traditionally rely on expert-selected input. Our approach also quantifies the impact on air quality from a variety of geographic features (i.e., how various types of geographic features such as parking lots and commercial buildings affect air quality and from what distance) representing mobile, stationary and area natural and anthropogenic air pollution sources. This approach is particularly important for enabling the construction of context-specific spatiotemporal models of air pollution, allowing investigations of the impact of air pollution exposures on sensitive populations such as children with asthma at scale.
空气质量模型对于在精细的时空尺度上研究空气污染物对健康状况的影响至关重要。现有工作通常依赖于特定区域、专家选定的污染排放(例如交通)和扩散(例如气象)属性,为每个研究区域、污染物类型和时空尺度的组合构建模型。在本文中,我们提出了一种数据挖掘方法,该方法利用公开可用的开放街道地图(OSM)数据,自动生成不同时间尺度下空气动力学直径小于2.5微米的细颗粒物浓度的空气质量模型。我们的实验表明,我们的无(领域)专家模型能够生成准确的PM浓度预测,可用于改进传统上依赖专家选定输入的空气质量模型。我们的方法还量化了各种地理特征对空气质量的影响(即停车场和商业建筑等各种类型的地理特征如何影响空气质量以及从多远的距离),这些地理特征代表了移动、固定以及区域自然和人为空气污染来源。这种方法对于构建特定环境的空气污染时空模型尤为重要,能够在大规模上研究空气污染暴露对敏感人群(如哮喘儿童)的影响。