Triesch Jochen
Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany.
Neural Comput. 2007 Apr;19(4):885-909. doi: 10.1162/neco.2007.19.4.885.
We propose a model of intrinsic plasticity for a continuous activation model neuron based on information theory. We then show how intrinsic and synaptic plasticity mechanisms interact and allow the neuron to discover heavy-tailed directions in the input. We also demonstrate that intrinsic plasticity may be an alternative explanation for the sliding threshold postulated in the BCM theory of synaptic plasticity. We present a theoretical analysis of the interaction of intrinsic plasticity with different Hebbian learning rules for the case of clustered inputs. Finally, we perform experiments on the "bars" problem, a popular nonlinear independent component analysis problem.
我们基于信息论提出了一种用于连续激活模型神经元的内在可塑性模型。然后我们展示了内在和突触可塑性机制如何相互作用,并使神经元能够在输入中发现重尾方向。我们还证明,内在可塑性可能是对突触可塑性BCM理论中假定的滑动阈值的另一种解释。对于聚类输入的情况,我们给出了内在可塑性与不同赫布学习规则相互作用的理论分析。最后,我们对“条形”问题(一个流行的非线性独立成分分析问题)进行了实验。