Department of Neurobiology, University of Chicago, Chicago, IL 60637.
Department of Neurobiology, University of Chicago, Chicago, IL 60637
eNeuro. 2020 Mar 16;7(2). doi: 10.1523/ENEURO.0453-19.2020. Print 2020 Mar/Apr.
Muscarinic acetylcholine receptors (mAChRs) inhibit small-conductance calcium-activated K channels (SK channels) and enhance synaptic weight via this mechanism. SK channels are also involved in activity-dependent plasticity of membrane excitability ("intrinsic plasticity"). Here, we investigate whether mAChR activation can drive SK channel-dependent intrinsic plasticity in L2/3 cortical pyramidal neurons. Using whole-cell patch-clamp recordings from these neurons in slices prepared from mouse primary somatosensory cortex (S1), we find that brief bath application of the mAChR agonist oxotremorine-m (oxo-m) causes long-term enhancement of excitability in wild-type mice that is not observed in mice deficient of SK channels of the SK2 isoform. Similarly, repeated injection of depolarizing current pulses into the soma triggers intrinsic plasticity that is absent from SK2 null mice. Intrinsic plasticity lowers spike frequency adaptation and attenuation of spike firing upon prolonged activation, consistent with SK channel modulation. Depolarization-induced plasticity is prevented by bath application of the protein kinase A (PKA) inhibitor H89, and the casein kinase 2 (CK2) inhibitor TBB, respectively. These findings point toward a recruitment of two known signaling pathways in SK2 regulation: SK channel trafficking (PKA) and reduction of the calcium sensitivity (CK2). Using mice with an inactivation of CaMKII (T305D mice), we show that intrinsic plasticity does not require CaMKII. Finally, we demonstrate that repeated injection of depolarizing pulses in the presence of oxo-m causes intrinsic plasticity that surpasses the plasticity amplitude reached by either manipulation alone. Our findings show that muscarinic activation enhances membrane excitability in L2/3 pyramidal neurons via a downregulation of SK2 channels.
毒蕈碱型乙酰胆碱受体 (mAChR) 通过这种机制抑制小电导钙激活钾通道 (SK 通道) 并增强突触权重。SK 通道也参与膜兴奋性的活动依赖性可塑性(“内在可塑性”)。在这里,我们研究 mAChR 激活是否可以在 L2/3 皮质锥体神经元中驱动 SK 通道依赖性的内在可塑性。使用从小鼠初级体感皮层 (S1) 切片中这些神经元的全细胞膜片钳记录,我们发现,短暂的浴应用 mAChR 激动剂 oxotremorine-m (oxo-m) 会导致野生型小鼠的兴奋性长期增强,而在 SK2 同工型 SK 通道缺失的小鼠中则观察不到这种现象。同样,反复向胞体注入去极化电流脉冲会触发内在可塑性,而 SK2 缺失小鼠则没有这种可塑性。内在可塑性降低了 Spike 频率适应和 Spike 发射的衰减,这与 SK 通道调节一致。通过浴应用蛋白激酶 A (PKA) 抑制剂 H89 和酪蛋白激酶 2 (CK2) 抑制剂 TBB,分别防止了去极化诱导的可塑性。这些发现指向了在 SK2 调节中两种已知信号通路的招募:SK 通道运输(PKA)和钙敏感性降低(CK2)。使用 CaMKII 失活 (T305D 小鼠) 的小鼠,我们表明内在可塑性不需要 CaMKII。最后,我们证明了在 oxo-m 存在的情况下重复注入去极化脉冲会导致内在可塑性,其超过了单独任何一种操作达到的可塑性幅度。我们的研究结果表明,毒蕈碱激活通过下调 SK2 通道增强 L2/3 锥体神经元的膜兴奋性。