Dyrholm Mads, Makeig Scott, Hansen Lars Kai
Intelligent Signal Processing Group, Informatics and Mathematical Modelling, Technical University of Denmark, 2800 Lyngby, Denmark.
Neural Comput. 2007 Apr;19(4):934-55. doi: 10.1162/neco.2007.19.4.934.
We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model.
我们提出了一种用于最大似然卷积独立成分分析(ICA)的新算法,其中使用通过估计混合过程的卷积模型隐式确定的稳定自回归滤波器对成分进行分离。通过为成分引入卷积混合模型,我们展示了如何使用贝叶斯模型选择来正确检测模型中滤波器的阶数。我们展示了一个用于对脑电图(EEG)中的独立成分子空间进行反卷积的框架。初步结果表明,在某些情况下,卷积混合可能是比瞬时ICA模型更适用于EEG信号的模型。