Nadtochiy Sergiy M, Burwell Lindsay S, Brookes Paul S
Department of Anesthesiology, PO Box 604, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
J Mol Cell Cardiol. 2007 Apr;42(4):812-25. doi: 10.1016/j.yjmcc.2007.01.010. Epub 2007 Jan 31.
Mitochondrial dysfunction is a key pathologic event in cardiac ischemia-reperfusion (IR) injury, and protection of mitochondrial function is a potential mechanism underlying ischemic preconditioning (IPC). Acknowledging the role of nitric oxide (NO()) in IPC, it was hypothesized that mitochondrial protein S-nitrosation may be a cardioprotective mechanism. The reagent S-nitroso-2-mercaptopropionyl-glycine (SNO-MPG) was therefore developed to enhance mitochondrial S-nitrosation and elicit cardioprotection. Within cardiomyocytes, mitochondrial proteins were effectively S-nitrosated by SNO-MPG. Consistent with the recent discovery of mitochondrial complex I as an S-nitrosation target, SNO-MPG inhibited complex I activity and cardiomyocyte respiration. The latter effect was insensitive to the NO() scavenger c-PTIO, indicating no role for NO()-mediated complex IV inhibition. A cardioprotective role for reversible complex I inhibition has been proposed, and consistent with this SNO-MPG protected cardiomyocytes from simulated IR injury. Further supporting a cardioprotective role for endogenous mitochondrial S-nitrosothiols, patterns of protein S-nitrosation were similar in mitochondria isolated from Langendorff perfused hearts subjected to IPC, and mitochondria or cells treated with SNO-MPG. The functional recovery of perfused hearts from IR injury was also improved under conditions which stabilized endogenous S-nitrosothiols (i.e. dark), or by pre-ischemic administration of SNO-MPG. Mitochondria isolated from SNO-MPG-treated hearts at the end of ischemia exhibited improved Ca(2+) handling and lower ROS generation. Overall these data suggest that mitochondrial S-nitrosation and complex I inhibition constitute a protective signaling pathway that is amenable to pharmacologic augmentation.
线粒体功能障碍是心脏缺血再灌注(IR)损伤中的关键病理事件,而保护线粒体功能是缺血预处理(IPC)的潜在机制。鉴于一氧化氮(NO)在IPC中的作用,有人提出线粒体蛋白S-亚硝基化可能是一种心脏保护机制。因此,研发了试剂S-亚硝基-2-巯基丙酰甘氨酸(SNO-MPG)来增强线粒体S-亚硝基化并引发心脏保护作用。在心肌细胞内,SNO-MPG可有效使线粒体蛋白发生S-亚硝基化。与最近发现线粒体复合物I为S-亚硝基化靶点一致,SNO-MPG抑制了复合物I的活性和心肌细胞呼吸。后一种效应对NO清除剂c-PTIO不敏感,表明NO介导的复合物IV抑制不起作用。有人提出可逆性复合物I抑制具有心脏保护作用,与此一致的是,SNO-MPG可保护心肌细胞免受模拟IR损伤。进一步支持内源性线粒体S-亚硝基硫醇具有心脏保护作用的是,从经历IPC的Langendorff灌注心脏分离的线粒体,以及用SNO-MPG处理的线粒体或细胞中,蛋白质S-亚硝基化模式相似。在稳定内源性S-亚硝基硫醇的条件下(即黑暗环境),或通过缺血前给予SNO-MPG,灌注心脏从IR损伤中的功能恢复也得到改善。在缺血末期从经SNO-MPG处理的心脏分离的线粒体表现出改善的Ca2+处理能力和较低的活性氧生成。总体而言,这些数据表明线粒体S-亚硝基化和复合物I抑制构成了一条可通过药物增强的保护信号通路。