Shvedova Maria, Anfinogenova Yana, Popov Sergey V, Atochin Dmitriy N
Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
Front Physiol. 2018 May 16;9:479. doi: 10.3389/fphys.2018.00479. eCollection 2018.
Irreversible myocardial damage happens in the presence of prolonged and severe ischemia. Several phenomena protect the heart against myocardial infarction and other adverse outcomes of ischemia and reperfusion (IR), namely: hibernation related to stunned myocardium, ischemic preconditioning (IPC), ischemic post-conditioning, and their pharmacological surrogates. Ischemic preconditioning consists in the induction of a brief IR to reduce damage of the tissue caused by prolonged and severe ischemia. Nitric oxide (NO) signaling plays an essential role in IPC. Nitric oxide-sensitive guanylate cyclase/cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase type I-signaling pathway protects against the IR injury during myocardial infarction. Mitochondrial ATP-sensitive and Ca-activated K channels are involved in NO-mediated signaling in IPC. Independently of the cGMP-mediated induction of NO production, -nitrosation represents a regulatory molecular mechanism similar to phosphorylation and is essential for IPC. Unlike conditioning phenomena, the mechanistic basis of myocardial stunning and hibernation remains poorly understood. In this review article, we hypothesize that the disruption of electrical syncytium of the myocardium may underly myocardial stunning and hibernation. Considering that the connexins are the building blocks of gap junctions which represent primary structural basis of electrical syncytium, we discuss data on the involvement of connexins into myocardial conditioning, stunning, and hibernation. We also show how NO-mediated signaling is involved in myocardial stunning and hibernation. Connexins represent an essential element of adaptation phenomena of the heart at the level of both the cardio- myocytes and the mitochondria. Nitric oxide targets mitochondrial connexins which may affect electrical syncytium continuum in the heart. Mitochondrial connexins may play an essential role in NO-dependent mechanisms of myocardial adaptation to ischemia.
不可逆性心肌损伤发生在长时间严重缺血的情况下。有几种现象可保护心脏免受心肌梗死以及缺血再灌注(IR)的其他不良后果影响,即:与心肌顿抑相关的心肌冬眠、缺血预处理(IPC)、缺血后处理及其药理学替代物。缺血预处理包括诱导短暂的IR,以减少长时间严重缺血对组织造成的损伤。一氧化氮(NO)信号传导在IPC中起重要作用。一氧化氮敏感的鸟苷酸环化酶/环磷酸鸟苷(cGMP)依赖性蛋白激酶I信号通路可保护心肌梗死期间的IR损伤。线粒体ATP敏感性和钙激活钾通道参与IPC中NO介导的信号传导。独立于cGMP介导的NO产生诱导,亚硝基化是一种类似于磷酸化的调节分子机制,对IPC至关重要。与预处理现象不同,心肌顿抑和冬眠的机制基础仍知之甚少。在这篇综述文章中,我们假设心肌电同步性的破坏可能是心肌顿抑和冬眠的基础。考虑到连接蛋白是间隙连接的组成部分,而间隙连接是电同步性的主要结构基础,我们讨论了连接蛋白参与心肌预处理、顿抑和冬眠的数据。我们还展示了NO介导的信号传导如何参与心肌顿抑和冬眠。连接蛋白是心脏在心肌细胞和线粒体水平适应现象的重要元素。一氧化氮作用于线粒体连接蛋白,这可能会影响心脏中的电同步性连续性。线粒体连接蛋白可能在NO依赖性心肌缺血适应机制中起重要作用。