Suppr超能文献

古菌中的基因衰退。

Gene decay in archaea.

作者信息

van Passel M W J, Smillie C S, Ochman H

机构信息

Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 East Lowell Street, Tucson, AZ 85721, USA.

出版信息

Archaea. 2007 May;2(2):137-43. doi: 10.1155/2007/165723.

Abstract

The gene-dense chromosomes of archaea and bacteria were long thought to be devoid of pseudogenes, but with the massive increase in available genome sequences, whole genome comparisons between closely related species have identified mutations that have rendered numerous genes inactive. Comparative analyses of sequenced archaeal genomes revealed numerous pseudogenes, which can constitute up to 8.6% of the annotated coding sequences in some genomes. The largest proportion of pseudogenes is created by gene truncations, followed by frameshift mutations. Within archaeal genomes, large numbers of pseudogenes contain more than one inactivating mutation, suggesting that pseudogenes are deleted from the genome more slowly in archaea than in bacteria. Although archaea seem to retain pseudogenes longer than do bacteria, most archaeal genomes have unique repertoires of pseudogenes.

摘要

长期以来,人们一直认为古生菌和细菌的基因密集型染色体不含假基因,但随着可用基因组序列的大量增加,亲缘关系较近物种之间的全基因组比较发现了许多使基因失活的突变。对已测序古生菌基因组的比较分析揭示了大量假基因,在某些基因组中,假基因可占注释编码序列的8.6%。假基因的最大比例是由基因截断产生的,其次是移码突变。在古生菌基因组中,大量假基因含有不止一个失活突变,这表明与细菌相比,古生菌基因组中假基因的删除速度更慢。尽管古生菌似乎比细菌保留假基因的时间更长,但大多数古生菌基因组都有独特的假基因库。

相似文献

1
Gene decay in archaea.
Archaea. 2007 May;2(2):137-43. doi: 10.1155/2007/165723.
2
Origins of major archaeal clades correspond to gene acquisitions from bacteria.
Nature. 2015 Jan 1;517(7532):77-80. doi: 10.1038/nature13805. Epub 2014 Oct 15.
4
En route to a genome-based classification of Archaea and Bacteria?
Syst Appl Microbiol. 2010 Jun;33(4):175-82. doi: 10.1016/j.syapm.2010.03.003. Epub 2010 Apr 20.
5
Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes.
Genome Biol Evol. 2020 Apr 1;12(4):282-292. doi: 10.1093/gbe/evaa047.
6
Insertion sequence diversity in archaea.
Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57. doi: 10.1128/MMBR.00031-06.
7
Phylogeny and evolution of the Archaea: one hundred genomes later.
Curr Opin Microbiol. 2011 Jun;14(3):274-81. doi: 10.1016/j.mib.2011.04.015. Epub 2011 Jun 1.
8
Prokaryotic genomes: the emerging paradigm of genome-based microbiology.
Curr Opin Genet Dev. 1997 Dec;7(6):757-63. doi: 10.1016/s0959-437x(97)80037-8.
9
A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.
Nature. 2009 Dec 24;462(7276):1056-60. doi: 10.1038/nature08656.

引用本文的文献

2
A Probabilistic Model for Indel Evolution: Differentiating Insertions from Deletions.
Mol Biol Evol. 2021 Dec 9;38(12):5769-5781. doi: 10.1093/molbev/msab266.
3
Programmed Deviations of Ribosomes From Standard Decoding in Archaea.
Front Microbiol. 2021 Jun 4;12:688061. doi: 10.3389/fmicb.2021.688061. eCollection 2021.
4
Birth, death, and diversification of mobile promoters in prokaryotes.
Genetics. 2014 May;197(1):291-9. doi: 10.1534/genetics.114.162883. Epub 2014 Feb 27.
5
Translational recoding in archaea.
Extremophiles. 2012 Nov;16(6):793-803. doi: 10.1007/s00792-012-0482-8. Epub 2012 Sep 27.
6
Promoter propagation in prokaryotes.
Nucleic Acids Res. 2012 Nov 1;40(20):10032-40. doi: 10.1093/nar/gks787. Epub 2012 Aug 28.
7
Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication.
J Biol Chem. 2011 Sep 9;286(36):31180-93. doi: 10.1074/jbc.M111.258038. Epub 2011 Jul 22.
8
The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons.
Nucleic Acids Res. 2011 Mar;39(5):1732-8. doi: 10.1093/nar/gkq1067. Epub 2010 Nov 4.
9
The extinction dynamics of bacterial pseudogenes.
PLoS Genet. 2010 Aug 5;6(8):e1001050. doi: 10.1371/journal.pgen.1001050.
10
Deletional bias across the three domains of life.
Genome Biol Evol. 2009 Jun 27;1:145-52. doi: 10.1093/gbe/evp016.

本文引用的文献

1
The nature and dynamics of bacterial genomes.
Science. 2006 Mar 24;311(5768):1730-3. doi: 10.1126/science.1119966.
2
Toward automatic reconstruction of a highly resolved tree of life.
Science. 2006 Mar 3;311(5765):1283-7. doi: 10.1126/science.1123061.
3
Recoding in bacteriophages and bacterial IS elements.
Trends Genet. 2006 Mar;22(3):174-81. doi: 10.1016/j.tig.2006.01.005. Epub 2006 Feb 7.
5
The integrated microbial genomes (IMG) system.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D344-8. doi: 10.1093/nar/gkj024.
6
ICDS database: interrupted CoDing sequences in prokaryotic genomes.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D338-43. doi: 10.1093/nar/gkj060.
8
The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.
J Bacteriol. 2005 Jul;187(14):4992-9. doi: 10.1128/JB.187.14.4992-4999.2005.
9
Recognizing the pseudogenes in bacterial genomes.
Nucleic Acids Res. 2005 Jun 2;33(10):3125-32. doi: 10.1093/nar/gki631. Print 2005.
10
Genomic studies of uncultivated archaea.
Nat Rev Microbiol. 2005 Jun;3(6):479-88. doi: 10.1038/nrmicro1159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验