Suppr超能文献

阿拉米辛掺入膜中的脂链长度依赖性:对TOAC自旋标记类似物的电子顺磁共振研究

Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs.

作者信息

Marsh Derek, Jost Micha, Peggion Cristina, Toniolo Claudio

机构信息

Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37070 Göttingen, Germany.

出版信息

Biophys J. 2007 Jun 1;92(11):4002-11. doi: 10.1529/biophysj.107.104026. Epub 2007 Mar 9.

Abstract

Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.

摘要

短杆菌肽A是一种由19个氨基酸残基组成的疏水肽,其C端为苯丙氨醇,但缺乏可能将肽链两端固定在脂-水界面的残基。由短杆菌肽A形成的电压依赖性离子通道的特性在很大程度上取决于宿主脂质膜的链长。电子顺磁共振光谱用于研究自旋标记的短杆菌肽A在磷脂酰胆碱双层膜中的掺入对脂质链长的依赖性。自旋标记氨基酸TOAC在短杆菌肽F50/5序列的第n = 1、8或16位残基处取代[TOAC(n),Glu(OMe)(7,18,19)]。三种TOAC衍生物的极性依赖性各向同性超精细偶合表明,在链长范围为N = 10 - 18的流体二C(N)磷脂酰胆碱双层膜中,短杆菌肽A相对于膜中平面的位置大致相同。残基TOAC(8)最靠近双层膜中平面,而TOAC(16)位于相对脂质小叶疏水核心中离中平面较远的位置,TOAC(1)则保留在脂质极性头部区域。取向序参数表明,即使在流体相的高温下,短杆菌肽A相对于膜法线的倾斜度也相对较小,并且随着链长的减小增加相当缓慢(在75℃时,N = 18和10时分别从13度增加到23度)。这不足以使短杆菌肽A实现疏水匹配。短杆菌肽A的掺入模式与其他已确定跨膜取向与脂质链长函数关系的螺旋肽不同。

相似文献

3
TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes.
Biophys J. 2007 Jan 15;92(2):473-81. doi: 10.1529/biophysj.106.092775. Epub 2006 Oct 20.
5
Backbone dynamics of alamethicin bound to lipid membranes: spin-echo electron paramagnetic resonance of TOAC-spin labels.
Biophys J. 2008 Apr 1;94(7):2698-705. doi: 10.1529/biophysj.107.115287. Epub 2007 Dec 20.
6
Solvent dependence of the rotational diffusion of TOAC-spin-labeled alamethicin.
Chem Biodivers. 2007 Jun;4(6):1269-74. doi: 10.1002/cbdv.200790109.
8
Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels.
Phys Chem Chem Phys. 2018 Jan 31;20(5):3592-3601. doi: 10.1039/c7cp07298h.
9
Polarity dependence of EPR parameters for TOAC and MTSSL spin labels: correlation with DOXYL spin labels for membrane studies.
J Magn Reson. 2008 Feb;190(2):211-21. doi: 10.1016/j.jmr.2007.11.005. Epub 2007 Nov 9.
10
Location and aggregation of the spin-labeled peptide trichogin GA IV in a phospholipid membrane as revealed by pulsed EPR.
Biophys J. 2006 Aug 15;91(4):1532-40. doi: 10.1529/biophysj.105.075887. Epub 2006 Jun 2.

引用本文的文献

1
Recent advances and applications of peptide-agent conjugates for targeting tumor cells.
J Cancer Res Clin Oncol. 2023 Nov;149(16):15249-15273. doi: 10.1007/s00432-023-05144-9. Epub 2023 Aug 15.
2
Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids.
J Phys Chem B. 2022 Aug 11;126(31):5842-5854. doi: 10.1021/acs.jpcb.2c02862. Epub 2022 Jul 27.
3
Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside.
Front Oncol. 2022 Feb 23;12:819563. doi: 10.3389/fonc.2022.819563. eCollection 2022.
4
A Novel Dual-Targeted α-Helical Peptide With Potent Antifungal Activity Against Fluconazole-Resistant Clinical Isolates.
Front Microbiol. 2020 Sep 30;11:548620. doi: 10.3389/fmicb.2020.548620. eCollection 2020.
5
Anti-cancer peptides: classification, mechanism of action, reconstruction and modification.
Open Biol. 2020 Jul;10(7):200004. doi: 10.1098/rsob.200004. Epub 2020 Jul 22.
6
Spin-label Order Parameter Calibrations for Slow Motion.
Appl Magn Reson. 2018;49(1):97-106. doi: 10.1007/s00723-017-0940-7. Epub 2017 Sep 9.
7
Alamethicin Supramolecular Organization in Lipid Membranes from F Solid-State NMR.
Biophys J. 2016 Dec 6;111(11):2450-2459. doi: 10.1016/j.bpj.2016.09.048.
8
Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion.
Biophys J. 2016 Sep 20;111(6):1248-1257. doi: 10.1016/j.bpj.2016.08.014.
9
Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers.
J Am Chem Soc. 2016 Jan 20;138(2):688-95. doi: 10.1021/jacs.5b12057. Epub 2016 Jan 8.
10
Lipid Fluid-Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy.
J Phys Chem C Nanomater Interfaces. 2013 Aug 20;117(33):17039-17049. doi: 10.1021/jp4047215.

本文引用的文献

1
Conformational analysis of TOAC-labelled alamethicin F50/5 analogues.
Chem Biodivers. 2007 Jun;4(6):1256-68. doi: 10.1002/cbdv.200790108.
2
Total syntheses in solution of TOAC-labelled alamethicin F50/5 analogues.
Chem Biodivers. 2007 Jun;4(6):1183-99. doi: 10.1002/cbdv.200790104.
3
Crystal structure of a spin-labeled, channel-forming alamethicin analogue.
Angew Chem Int Ed Engl. 2007;46(12):2047-50. doi: 10.1002/anie.200604417.
4
TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes.
Biophys J. 2007 Jan 15;92(2):473-81. doi: 10.1529/biophysj.106.092775. Epub 2006 Oct 20.
5
Peptides in lipid bilayers: the power of simple models.
Curr Opin Struct Biol. 2006 Aug;16(4):473-9. doi: 10.1016/j.sbi.2006.06.007. Epub 2006 Jul 7.
6
Closer look at structure of fully hydrated fluid phase DPPC bilayers.
Biophys J. 2006 Jun 1;90(11):L83-5. doi: 10.1529/biophysj.106.086017. Epub 2006 Apr 14.
7
OPM: orientations of proteins in membranes database.
Bioinformatics. 2006 Mar 1;22(5):623-5. doi: 10.1093/bioinformatics/btk023. Epub 2006 Jan 5.
8
Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch.
J Mol Biol. 2005 Jul 8;350(2):310-8. doi: 10.1016/j.jmb.2005.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验