Suppr超能文献

用于透射断层扫描的交替最小化算法。

Alternating minimization algorithms for transmission tomography.

作者信息

O'Sullivan Joseph A, Benac Jasenka

机构信息

Electronic Systems and Signals Research Laboratory, Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA.

出版信息

IEEE Trans Med Imaging. 2007 Mar;26(3):283-97. doi: 10.1109/TMI.2006.886806.

Abstract

A family of alternating minimization algorithms for finding maximum-likelihood estimates of attenuation functions in transmission X-ray tomography is described. The model from which the algorithms are derived includes polyenergetic photon spectra, background events, and nonideal point spread functions. The maximum-likelihood image reconstruction problem is reformulated as a double minimization of the I-divergence. A novel application of the convex decomposition lemma results in an alternating minimization algorithm that monotonically decreases the objective function. Each step of the minimization is in closed form. The family of algorithms includes variations that use ordered subset techniques for increasing the speed of convergence. Simulations demonstrate the ability to correct the cupping artifact due to beam hardening and the ability to reduce streaking artifacts that arise from beam hardening and background events.

摘要

本文描述了一族用于在透射X射线断层扫描中寻找衰减函数最大似然估计的交替最小化算法。推导这些算法所依据的模型包括多能光子谱、背景事件和非理想点扩散函数。最大似然图像重建问题被重新表述为I散度的双重最小化。凸分解引理的一种新颖应用产生了一种交替最小化算法,该算法单调地降低目标函数。最小化的每一步都以封闭形式给出。这族算法包括使用有序子集技术来提高收敛速度的变体。模拟结果表明,该算法能够校正由于束硬化导致的杯状伪影,以及减少由束硬化和背景事件引起的条纹伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验