Suppr超能文献

美国医学物理学家协会深度学习光谱CT重大挑战报告。

Report on the AAPM deep-learning spectral CT Grand Challenge.

作者信息

Sidky Emil Y, Pan Xiaochuan

机构信息

Department of Radiology, The University of Chicago, Chicago, Illinois, USA.

出版信息

Med Phys. 2024 Feb;51(2):772-785. doi: 10.1002/mp.16363. Epub 2023 Apr 1.

Abstract

BACKGROUND

This Special Report summarizes the 2022 AAPM Grand Challenge on Deep-Learning spectral Computed Tomography (DL-spectral CT) image reconstruction.

PURPOSE

The purpose of the challenge is to develop the most accurate image reconstruction algorithm possible for solving the inverse problem associated with a fast kilovolt switching dual-energy CT scan using a three tissue-map decomposition. Participants could choose to use a deep-learning (DL), iterative, or a hybrid approach.

METHODS

The challenge is based on a 2D breast CT simulation, where the simulated breast phantom consists of three tissue maps: adipose, fibroglandular, and calcification distributions. The phantom specification is stochastic so that multiple realizations can be generated for DL approaches. A dual-energy scan is simulated where the x-ray source potential of successive views alternates between 50 and 80 kilovolts (kV). A total of 512 views are generated, yielding 256 views for each source voltage. We generate 50 and 80 kV images by use of filtered back-projection (FBP) on negative logarithm processed transmission data. For participants who develop a DL approach, 1000 cases are available. Each case consists of the three 512 × 512 tissue maps, 50 and 80-kV transmission data sets and their corresponding FBP images. The goal of the DL network would then be to predict the material maps from either the transmission data, FBP images, or a combination of the two. For participants developing a physics-based approach, all of the required modeling parameters are made available: geometry, spectra, and tissue attenuation curves. The provided information also allows for hybrid approaches where physics is exploited as well as information about the scanned object derived from the 1000 training cases. Final testing is performed by computation of root-mean-square error (RMSE) for predictions on the tissue maps from 100 new cases.

RESULTS

Test phase submission were received from 18 research groups. Of the 18 submissions, 17 were results obtained with algorithms that involved DL. Only the second place finishing team developed a physics-based image reconstruction algorithm. Both the winning and second place teams had highly accurate results where the RMSE was nearly zero to single floating point precision. Results from the top 10 also achieved a high degree of accuracy; and as a result, this special report outlines the methodology developed by each of these groups.

CONCLUSIONS

The DL-spectral CT challenge successfully established a forum for developing image reconstruction algorithms that address an important inverse problem relevant for spectral CT.

摘要

背景

本特别报告总结了2022年美国医学物理学会深度学习光谱计算机断层扫描(DL光谱CT)图像重建大挑战。

目的

该挑战的目的是开发一种尽可能准确的图像重建算法,以解决与使用三组织图分解的快速千伏切换双能CT扫描相关的逆问题。参与者可以选择使用深度学习(DL)、迭代或混合方法。

方法

该挑战基于二维乳腺CT模拟,其中模拟乳腺模型由三个组织图组成:脂肪、纤维腺体和钙化分布。模型规格是随机的,因此可以为DL方法生成多个实例。模拟双能扫描,其中连续视图的X射线源电势在50和80千伏(kV)之间交替。总共生成512个视图,每个源电压产生256个视图。我们通过对负对数处理后的透射数据使用滤波反投影(FBP)生成50 kV和80 kV图像。对于开发DL方法的参与者,有1000个案例可用。每个案例包括三个512×512组织图、50 kV和80 kV透射数据集及其相应的FBP图像。然后,DL网络的目标是从透射数据、FBP图像或两者的组合中预测物质图。对于开发基于物理方法的参与者,提供了所有所需的建模参数:几何形状、光谱和组织衰减曲线。所提供的信息还允许采用混合方法,即利用物理知识以及从1000个训练案例中得出的关于扫描对象的信息。通过计算100个新案例的组织图预测的均方根误差(RMSE)进行最终测试。

结果

收到了18个研究小组的测试阶段提交材料。在这18份提交材料中,17份是使用涉及DL的算法获得的结果。只有获得第二名的团队开发了基于物理的图像重建算法。获胜团队和第二名团队都有非常准确的结果,RMSE几乎为零,达到单浮点精度。前10名的结果也达到了很高的准确度;因此,本特别报告概述了每个小组开发的方法。

结论

DL光谱CT挑战成功建立了一个论坛,用于开发解决与光谱CT相关的重要逆问题的图像重建算法。

相似文献

6
A Two-Step Framework for Multi-Material Decomposition of Dual Energy Computed Tomography from Projection Domain.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-7. doi: 10.1109/EMBC53108.2024.10782757.

本文引用的文献

3
Non-convex primal-dual algorithm for image reconstruction in spectral CT.光谱 CT 图像重建的非凸原对偶算法。
Comput Med Imaging Graph. 2021 Jan;87:101821. doi: 10.1016/j.compmedimag.2020.101821. Epub 2020 Dec 8.
4
Do CNNs Solve the CT Inverse Problem?CNN 能否解决 CT 逆问题?
IEEE Trans Biomed Eng. 2021 Jun;68(6):1799-1810. doi: 10.1109/TBME.2020.3020741. Epub 2021 May 21.
6
Photon-counting cine-cardiac CT in the mouse.光子计数心脏 CT 在小鼠中的应用。
PLoS One. 2019 Sep 19;14(9):e0218417. doi: 10.1371/journal.pone.0218417. eCollection 2019.
7
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
8
An extended algebraic reconstruction technique (E-ART) for dual spectral CT.双能谱 CT 的扩展代数重建技术(E-ART)。
IEEE Trans Med Imaging. 2015 Mar;34(3):761-8. doi: 10.1109/TMI.2014.2373396. Epub 2014 Nov 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验