Suppr超能文献

MB-DECTNet:一种基于模型的展开网络,用于从临床采集的螺旋扫描中准确重建 3D 双能 CT。

MB-DECTNet: a model-based unrolling network for accurate 3D dual-energy CT reconstruction from clinically acquired helical scans.

机构信息

Washington University in St. Louis, Saint Louis, MO 63130, United States of America.

出版信息

Phys Med Biol. 2023 Dec 8;68(24):245009. doi: 10.1088/1361-6560/ad00fb.

Abstract

Over the past several decades, dual-energy CT (DECT) imaging has seen significant advancements due to its ability to distinguish between materials. DECT statistical iterative reconstruction (SIR) has exhibited potential for noise reduction and enhanced accuracy. However, its slow convergence and substantial computational demands render the elapsed time for 3D DECT SIR often clinically unacceptable. The objective of this study is to accelerate 3D DECT SIR while maintaining subpercentage or near-subpercentage accuracy.We incorporate DECT SIR into a deep-learning model-based unrolling network for 3D DECT reconstruction (MB-DECTNet), which can be trained end-to-end. This deep learning-based approach is designed to learn shortcuts between initial conditions and the stationary points of iterative algorithms while preserving the unbiased estimation property of model-based algorithms. MB-DECTNet comprises multiple stacked update blocks, each containing a data consistency layer (DC) and a spatial mixer layer, with the DC layer functioning as a one-step update from any traditional iterative algorithm.The quantitative results indicate that our proposed MB-DECTNet surpasses both the traditional image-domain technique (MB-DECTNet reduces average bias by a factor of 10) and a pure deep learning method (MB-DECTNet reduces average bias by a factor of 8.8), offering the potential for accurate attenuation coefficient estimation, akin to traditional statistical algorithms, but with considerably reduced computational costs. This approach achieves 0.13% bias and 1.92% mean absolute error and reconstructs a full image of a head in less than 12 min. Additionally, we show that the MB-DECTNet output can serve as an initializer for DECT SIR, leading to further improvements in results.This study presents a model-based deep unrolling network for accurate 3D DECT reconstruction, achieving subpercentage error in estimating virtual monoenergetic images for a full head at 60 and 150 keV in 30 min, representing a 40-fold speedup compared to traditional approaches. These findings have significant implications for accelerating DECT SIR and making it more clinically feasible.

摘要

在过去的几十年中,由于能够区分物质,双能 CT(DECT)成像技术取得了重大进展。DECT 统计迭代重建(SIR)在降低噪声和提高准确性方面显示出了潜力。然而,其收敛速度慢且计算需求大,导致 3D DECT SIR 的耗时在临床上往往难以接受。本研究旨在加速 3D DECT SIR,同时保持亚百分比或近亚百分比的准确性。我们将 DECT SIR 纳入基于深度学习模型的 3D DECT 重建展开网络(MB-DECTNet)中,该网络可以端到端训练。这种基于深度学习的方法旨在学习初始条件和迭代算法的稳定点之间的捷径,同时保持基于模型算法的无偏估计特性。MB-DECTNet 由多个堆叠的更新块组成,每个块包含一个数据一致性层(DC)和一个空间混合器层,其中 DC 层作为任何传统迭代算法的一步更新。定量结果表明,我们提出的 MB-DECTNet 优于传统的图像域技术(MB-DECTNet 将平均偏差降低了 10 倍)和纯深度学习方法(MB-DECTNet 将平均偏差降低了 8.8 倍),提供了准确的衰减系数估计的潜力,类似于传统的统计算法,但计算成本大大降低。该方法的偏差为 0.13%,平均绝对误差为 1.92%,不到 12 分钟即可重建整个头部的图像。此外,我们还表明,MB-DECTNet 的输出可以作为 DECT SIR 的初始化器,从而进一步提高结果。本研究提出了一种基于模型的深度展开网络,用于准确的 3D DECT 重建,在 30 分钟内以 60 和 150keV 对整个头部进行虚拟单能图像估计,误差低于 0.13%,与传统方法相比,速度提高了 40 倍。这些发现对加速 DECT SIR 并使其更具临床可行性具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1b8/10714406/2a421dcb289e/pmbad00fbf1_lr.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验