Suppr超能文献

扩散张量磁共振成像中的莱斯噪声去除

Rician noise removal in diffusion tensor MRI.

作者信息

Basu Saurav, Fletcher Thomas, Whitaker Ross

机构信息

University of Utah, School of Computing, Salt Lake City, UT 84112, USA.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):117-25. doi: 10.1007/11866565_15.

Abstract

Rician noise introduces a bias into MRI measurements that can have a significant impact on the shapes and orientations of tensors in diffusion tensor magnetic resonance images. This is less of a problem in structural MRI, because this bias is signal dependent and it does not seriously impair tissue identification or clinical diagnoses. However, diffusion imaging is used extensively for quantitative evaluations, and the tensors used in those evaluations are biased in ways that depend on orientation and signal levels. This paper presents a strategy for filtering diffusion tensor magnetic resonance images that addresses these issues. The method is a maximum a posteriori estimation technique that operates directly on the diffusion weighted images and accounts for the biases introduced by Rician noise. We account for Rician noise through a data likelihood term that is combined with a spatial smoothing prior. The method compares favorably with several other approaches from the literature, including methods that filter diffusion weighted imagery and those that operate directly on the diffusion tensors.

摘要

莱斯噪声会给磁共振成像(MRI)测量引入偏差,这可能会对扩散张量磁共振图像中张量的形状和方向产生重大影响。在结构MRI中,这一问题相对较小,因为这种偏差取决于信号,并且不会严重影响组织识别或临床诊断。然而,扩散成像广泛用于定量评估,而这些评估中使用的张量会以取决于方向和信号水平的方式产生偏差。本文提出了一种用于过滤扩散张量磁共振图像的策略,以解决这些问题。该方法是一种最大后验估计技术,直接对扩散加权图像进行操作,并考虑了莱斯噪声引入的偏差。我们通过一个数据似然项来考虑莱斯噪声,该似然项与空间平滑先验相结合。该方法与文献中的其他几种方法相比具有优势,包括过滤扩散加权图像的方法以及直接对扩散张量进行操作的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验