Faculty of Information Science and Technology, Research Centre for Cyber Security, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Department of Computer Science, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria.
PLoS One. 2021 Feb 25;16(2):e0245579. doi: 10.1371/journal.pone.0245579. eCollection 2021.
Achieving biologically interpretable neural-biomarkers and features from neuroimaging datasets is a challenging task in an MRI-based dyslexia study. This challenge becomes more pronounced when the needed MRI datasets are collected from multiple heterogeneous sources with inconsistent scanner settings. This study presents a method of improving the biological interpretation of dyslexia's neural-biomarkers from MRI datasets sourced from publicly available open databases. The proposed system utilized a modified histogram normalization (MHN) method to improve dyslexia neural-biomarker interpretations by mapping the pixels' intensities of low-quality input neuroimages to range between the low-intensity region of interest (ROIlow) and high-intensity region of interest (ROIhigh) of the high-quality image. This was achieved after initial image smoothing using the Gaussian filter method with an isotropic kernel of size 4mm. The performance of the proposed smoothing and normalization methods was evaluated based on three image post-processing experiments: ROI segmentation, gray matter (GM) tissues volume estimations, and deep learning (DL) classifications using Computational Anatomy Toolbox (CAT12) and pre-trained models in a MATLAB working environment. The three experiments were preceded by some pre-processing tasks such as image resizing, labelling, patching, and non-rigid registration. Our results showed that the best smoothing was achieved at a scale value, σ = 1.25 with a 0.9% increment in the peak-signal-to-noise ratio (PSNR). Results from the three image post-processing experiments confirmed the efficacy of the proposed methods. Evidence emanating from our analysis showed that using the proposed MHN and Gaussian smoothing methods can improve comparability of image features and neural-biomarkers of dyslexia with a statistically significantly high disc similarity coefficient (DSC) index, low mean square error (MSE), and improved tissue volume estimations. After 10 repeated 10-fold cross-validation, the highest accuracy achieved by DL models is 94.7% at a 95% confidence interval (CI) level. Finally, our finding confirmed that the proposed MHN method significantly outperformed the normalization method of the state-of-the-art histogram matching.
从神经影像学数据集中获得具有生物学可解释性的神经生物标志物和特征是基于 MRI 的阅读障碍研究中的一项具有挑战性的任务。当需要的 MRI 数据集来自具有不一致扫描仪设置的多个异构源时,这一挑战变得更加明显。本研究提出了一种从公开可用的开放数据库中获取的 MRI 数据集改善阅读障碍神经生物标志物的生物学解释的方法。所提出的系统利用改进的直方图归一化(MHN)方法,通过将低质量输入神经图像的像素强度映射到高质量图像的低感兴趣区域(ROIlow)和高感兴趣区域(ROIhigh)之间的范围来改善阅读障碍神经生物标志物的解释。这是在使用具有 4mm 各向同性核的高斯滤波器方法进行初始图像平滑之后实现的。在 MATLAB 工作环境中使用 Computational Anatomy Toolbox (CAT12) 和预训练模型进行 ROI 分割、灰质 (GM) 组织体积估计和深度学习 (DL) 分类的三个图像后处理实验的基础上,评估了所提出的平滑和归一化方法的性能。三个实验之前进行了一些预处理任务,如图像调整大小、标记、补丁和非刚性配准。我们的结果表明,在尺度值σ=1.25 下实现了最佳平滑,峰值信噪比(PSNR)提高了 0.9%。三个图像后处理实验的结果证实了所提出方法的有效性。我们的分析结果表明,使用所提出的 MHN 和高斯平滑方法可以提高阅读障碍的图像特征和神经生物标志物的可比性,具有统计学上显著较高的相似性系数(DSC)指数、低均方误差(MSE)和改进的组织体积估计。在 10 次重复的 10 折交叉验证后,DL 模型的最高准确率为 94.7%,置信区间(CI)为 95%。最后,我们的研究结果证实,所提出的 MHN 方法明显优于最先进的直方图匹配的归一化方法。