Suppr超能文献

使用各向异性平滑减少扩散张量图像中的噪声。

Reduction of noise in diffusion tensor images using anisotropic smoothing.

作者信息

Ding Zhaohua, Gore John C, Anderson Adam W

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 27232-2657, USA.

出版信息

Magn Reson Med. 2005 Feb;53(2):485-90. doi: 10.1002/mrm.20339.

Abstract

To improve the accuracy of tissue structural and architectural characterization with diffusion tensor imaging, a novel smoothing technique is developed for reducing noise in diffusion tensor images. The technique extends the traditional anisotropic diffusion filtering method by allowing isotropic smoothing within homogeneous regions and anisotropic smoothing along structure boundaries. This is particularly useful for smoothing diffusion tensor images in which direction information contained in the tensor needs to be restored following noise corruption and preserved around tissue boundaries. The effectiveness of this technique is quantitatively studied with experiments on simulated and human in vivo diffusion tensor data. Illustrative results demonstrate that the anisotropic smoothing technique developed can significantly reduce the impact of noise on the direction as well as anisotropy measures of the diffusion tensor images.

摘要

为了提高扩散张量成像对组织结构特征的表征准确性,开发了一种新的平滑技术,用于降低扩散张量图像中的噪声。该技术通过在均匀区域内允许各向同性平滑以及沿结构边界进行各向异性平滑,扩展了传统的各向异性扩散滤波方法。这对于平滑扩散张量图像特别有用,在这种图像中,张量中包含的方向信息在噪声破坏后需要恢复,并在组织边界周围保留。通过对模拟和人体体内扩散张量数据进行实验,定量研究了该技术的有效性。说明性结果表明,所开发的各向异性平滑技术可以显著降低噪声对扩散张量图像方向以及各向异性测量的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验