Suppr超能文献

复杂拓扑结构中合作的动态组织

Dynamical organization of cooperation in complex topologies.

作者信息

Gómez-Gardeñes J, Campillo M, Floría L M, Moreno Y

机构信息

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain.

出版信息

Phys Rev Lett. 2007 Mar 9;98(10):108103. doi: 10.1103/PhysRevLett.98.108103. Epub 2007 Mar 7.

Abstract

In this Letter, we study how cooperation is organized in complex topologies by analyzing the evolutionary (replicator) dynamics of the prisoner's dilemma, a two-player game with two available strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotically, the population is partitioned into three subsets: individuals that always cooperate (pure cooperators), always defect (pure defectors), and those that intermittently change their strategy. In fact, the size of the later set is the biggest for a wide range of the "stimulus to defect" parameter. While in homogeneous random graphs pure cooperators are grouped into several clusters, in heterogeneous scale-free (SF) networks they always form a single cluster containing the most connected individuals (hubs). Our results give further insights into why cooperation in SF networks is enhanced.

摘要

在本信函中,我们通过分析囚徒困境的进化(复制者)动力学来研究复杂拓扑结构中合作是如何组织的。囚徒困境是一种双人博弈,有背叛和合作两种可用策略,其收益矩阵有利于背叛。我们表明,渐近地,种群被划分为三个子集:总是合作的个体(纯合作者)、总是背叛的个体(纯背叛者)以及那些间歇性改变策略的个体。事实上,对于广泛的“背叛刺激”参数范围,后一组的规模是最大的。在均匀随机图中,纯合作者被分组到几个簇中,而在异质无标度(SF)网络中,它们总是形成一个包含连接性最强个体(中心节点)的单一簇。我们的结果进一步深入探讨了为什么SF网络中的合作会得到增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验