Suppr超能文献

通过迁移和随机模仿实现相互依存网络的合作。

Cooperation on Interdependent Networks by Means of Migration and Stochastic Imitation.

作者信息

Nag Chowdhury Sayantan, Kundu Srilena, Duh Maja, Perc Matjaž, Ghosh Dibakar

机构信息

Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.

Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.

出版信息

Entropy (Basel). 2020 Apr 23;22(4):485. doi: 10.3390/e22040485.

Abstract

Evolutionary game theory in the realm of network science appeals to a lot of research communities, as it constitutes a popular theoretical framework for studying the evolution of cooperation in social dilemmas. Recent research has shown that cooperation is markedly more resistant in interdependent networks, where traditional network reciprocity can be further enhanced due to various forms of interdependence between different network layers. However, the role of mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an interdependent network model, where individuals in each layer follow different evolutionary games, and where each player is considered as a mobile agent that can move locally inside its own layer to improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on the other layer. We show that, by considering migration and stochastic imitation, further fascinating gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be promoted on both layers, even if cooperation without interdependence would be improbable on one of the layers due to adverse conditions. Our results provide a rationale for engineering better social systems at the interface of networks and human decision making under testing dilemmas.

摘要

网络科学领域中的演化博弈论吸引了众多研究群体,因为它构成了研究社会困境中合作演化的一个流行理论框架。最近的研究表明,在相互依存网络中合作具有显著更强的抗性,在这种网络中,由于不同网络层之间存在各种形式的相互依存关系,传统的网络互惠性能够得到进一步增强。然而,流动性在相互依存网络中的作用尚未得到应有的关注。在此,我们考虑一个相互依存网络模型,其中每层中的个体遵循不同的演化博弈,并且每个参与者被视为一个移动主体,它可以在其自身所在层内局部移动以提高其适应度。概率上,我们还考虑了从另一层的邻居那里进行模仿的可能性。我们表明,通过考虑迁移和随机模仿,可以观察到相互依存网络上合作的更多迷人途径。值得注意的是,即使由于不利条件,在没有相互依存关系的情况下,某一层上的合作不太可能发生,但在两层上都可以促进合作。我们的结果为在测试困境下网络与人类决策的界面上设计更好的社会系统提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ae3/7516967/7eef9b396e5e/entropy-22-00485-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验