Suppr超能文献

关于透镜和显微镜物镜的复杂三维振幅点扩散函数:理论方面、模拟以及数字全息测量

On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography.

作者信息

Marian A, Charrière F, Colomb T, Montfort F, Kühn J, Marquet P, Depeursinge C

机构信息

Ecole Polytechnique Fédérale de Lausanne (EPFL), Imaging and Applied Optics Institute, Station 17, CH-1015 Lausanne, Switzerland.

出版信息

J Microsc. 2007 Feb;225(Pt 2):156-69. doi: 10.1111/j.1365-2818.2007.01727.x.

Abstract

The point spread function is widely used to characterize the three-dimensional imaging capabilities of an optical system. Usually, attention is paid only to the intensity point spread function, whereas the phase point spread function is most often neglected because the phase information is not retrieved in noninterferometric imaging systems. However, phase point spread functions are needed to evaluate phase-sensitive imaging systems and we believe that phase data can play an essential role in the full aberrations' characterization. In this paper, standard diffraction models have been used for the computation of the complex amplitude point spread function. In particular, the Debye vectorial model has been used to compute the amplitude point spread function of x63/0.85 and x100/1.3 microscope objectives, exemplifying the phase point spread function specific for each polarization component of the electromagnetic field. The effect of aberrations on the phase point spread function is then analyzed for a microscope objective used under nondesigned conditions, by developing the Gibson model (Gibson & Lanni, 1991), modified to compute the three-dimensional amplitude point spread function in amplitude and phase. The results have revealed a novel anomalous phase behaviour in the presence of spherical aberration, providing access to the quantification of the aberrations. This work mainly proposes a method to measure the complex three-dimensional amplitude point spread function of an optical imaging system. The approach consists in measuring and interpreting the amplitude point spread function by evaluating in amplitude and phase the image of a single emitting point, a 60-nm-diameter tip of a Near Field Scanning Optical Microscopy fibre, with an original digital holographic experimental setup. A single hologram gives access to the transverse amplitude point spread function. The three-dimensional amplitude point spread function is obtained by performing an axial scan of the Near Field Scanning Optical Microscopy fibre. The phase measurements accuracy is equivalent to lambda/60 when the measurement is performed in air. The method capability is demonstrated on an Achroplan x20 microscope objective with 0.4 numerical aperture. A more complete study on a x100 microscope objective with 1.3 numerical aperture is also presented, in which measurements performed with our setup are compared with the prediction of an analytical aberrations model.

摘要

点扩散函数被广泛用于表征光学系统的三维成像能力。通常,人们只关注强度点扩散函数,而相位点扩散函数大多时候被忽视,因为在非干涉成像系统中无法获取相位信息。然而,评估相敏成像系统需要相位点扩散函数,并且我们认为相位数据在全面表征像差方面可以发挥重要作用。在本文中,标准衍射模型已被用于计算复振幅点扩散函数。具体而言,德拜矢量模型已被用于计算x63/0.85和x100/1.3显微镜物镜的振幅点扩散函数,例证了电磁场每个偏振分量特有的相位点扩散函数。然后,通过改进吉布森模型(吉布森和兰尼,1991年)来分析在非设计条件下使用的显微镜物镜像差对相位点扩散函数的影响,该模型经修改后可计算振幅和相位的三维振幅点扩散函数。结果揭示了在存在球差时一种新的异常相位行为,为像差的量化提供了途径。这项工作主要提出了一种测量光学成像系统复三维振幅点扩散函数的方法。该方法包括通过使用原始数字全息实验装置,在振幅和相位上评估单个发射点(近场扫描光学显微镜光纤直径为60纳米的尖端)的图像来测量和解释振幅点扩散函数。单个全息图可获取横向振幅点扩散函数。通过对近场扫描光学显微镜光纤进行轴向扫描可获得三维振幅点扩散函数。在空气中进行测量时,相位测量精度相当于λ/60。该方法的能力在数值孔径为0.4的消色差平场x20显微镜物镜上得到了验证。还展示了对数值孔径为1.3的x100显微镜物镜进行的更全面研究,其中将我们装置进行的测量与解析像差模型的预测进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验