Suppr超能文献

贻贝足蛋白mfp-1和mfp-3的粘附机制。

Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3.

作者信息

Lin Qi, Gourdon Delphine, Sun Chengjun, Holten-Andersen Niels, Anderson Travers H, Waite J Herbert, Israelachvili Jacob N

机构信息

Department of Chemical Engineering, Graduate Program in Biomolecular Science and Engineering, University of California-Santa Barbara, Santa Barbara, CA 93106, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3782-6. doi: 10.1073/pnas.0607852104. Epub 2007 Feb 28.

Abstract

Mussels adhere to a variety of surfaces by depositing a highly specific ensemble of 3,4-dihydroxyphenyl-l-alanine (DOPA) containing proteins. The adhesive properties of Mytilus edulis foot proteins mfp-1 and mfp-3 were directly measured at the nano-scale by using a surface forces apparatus (SFA). An adhesion energy of order W approximately 3 x 10(-4) J/m(2) was achieved when separating two smooth and chemically inert surfaces of mica (a common alumino-silicate clay mineral) bridged or "glued" by mfp-3. This energy corresponds to an approximate force per plaque of approximately 100 gm, more than enough to hold a mussel in place if no peeling occurs. In contrast, no adhesion was detected between mica surfaces bridged by mfp-1. AFM imaging and SFA experiments showed that mfp-1 can adhere well to one mica surface, but is unable to then link to another (unless sheared), even after prolonged contact time or increased load (pressure). Although mechanistic explanations for the different behaviors are not yet possible, the results are consistent with the apparent function of the proteins, i.e., mfp-1 is disposed as a "protective" coating, and mfp-3 as the adhesive or "glue" that binds mussels to surfaces. The results suggest that the adhesion on mica is due to weak physical interactions rather than chemical bonding, and that the strong adhesion forces of plaques arise as a consequence of their geometry (e.g., their inability to be peeled off) rather than a high intrinsic surface or adhesion energy, W.

摘要

贻贝通过沉积一组高度特异的含3,4 - 二羟基苯丙氨酸(DOPA)的蛋白质来附着在各种表面上。利用表面力仪(SFA)在纳米尺度直接测量了紫贻贝足部蛋白mfp - 1和mfp - 3的粘附特性。当分离由mfp - 3“桥接”或“胶合”的两片光滑且化学惰性的云母表面(一种常见的铝硅酸盐粘土矿物)时,实现了约W = 3×10⁻⁴ J/m²量级的粘附能。这个能量相当于每片斑块约100克的近似力,如果不发生剥离,这足以将贻贝固定在原地。相比之下,在由mfp - 1桥接的云母表面之间未检测到粘附。原子力显微镜(AFM)成像和SFA实验表明,mfp - 1能很好地粘附在一个云母表面,但即使经过长时间接触或增加负载(压力)后,也无法与另一个云母表面连接(除非受到剪切力)。尽管目前还无法对这些不同行为给出机理解释,但结果与这些蛋白质的表观功能一致,即mfp - 1作为一种“保护”涂层,而mfp - 3作为将贻贝与表面结合的粘合剂或“胶水”。结果表明,在云母上的粘附是由于弱物理相互作用而非化学键合,并且斑块的强粘附力是由于其几何形状(例如它们无法被剥离)而非高固有表面能或粘附能W产生的。

相似文献

1
Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3.贻贝足蛋白mfp-1和mfp-3的粘附机制。
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3782-6. doi: 10.1073/pnas.0607852104. Epub 2007 Feb 28.
3
Mussel adhesive protein provides cohesive matrix for collagen type-1α.贻贝粘附蛋白为I型胶原蛋白α链提供粘性基质。
Biomaterials. 2015 May;51:51-57. doi: 10.1016/j.biomaterials.2015.01.033. Epub 2015 Feb 17.
8

引用本文的文献

6
Molecular Crowding: The History and Development of a Scientific Paradigm.分子拥挤:一种科学范式的历史与发展
Chem Rev. 2024 Mar 27;124(6):3186-3219. doi: 10.1021/acs.chemrev.3c00615. Epub 2024 Mar 11.
7
Dopamine alters phage morphology to exert an anti-infection effect.多巴胺改变噬菌体形态以发挥抗感染作用。
Front Microbiol. 2023 Nov 9;14:1272447. doi: 10.3389/fmicb.2023.1272447. eCollection 2023.

本文引用的文献

2
Adhesion a la moule.模具附着。
Integr Comp Biol. 2002 Dec;42(6):1172-80. doi: 10.1093/icb/42.6.1172.
4
Single-molecule mechanics of mussel adhesion.贻贝粘附的单分子力学
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12999-3003. doi: 10.1073/pnas.0605552103. Epub 2006 Aug 18.
7
Probing the adhesive footprints of Mytilus californianus byssus.探究加州贻贝足丝的粘附印记。
J Biol Chem. 2006 Apr 21;281(16):11090-6. doi: 10.1074/jbc.M510792200. Epub 2006 Feb 22.
9
Integrins in mechanotransduction.机械转导中的整合素
J Biol Chem. 2004 Mar 26;279(13):12001-4. doi: 10.1074/jbc.R300038200. Epub 2004 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验