MacRaild Christopher A, Daranas Antonio Hernández, Bronowska Agnieszka, Homans Steve W
Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
J Mol Biol. 2007 May 4;368(3):822-32. doi: 10.1016/j.jmb.2007.02.055. Epub 2007 Feb 22.
Protein dynamics make important but poorly understood contributions to molecular recognition phenomena. To address this, we measure changes in fast protein dynamics that accompany the interaction of the arabinose-binding protein (ABP) with its ligand, d-galactose, using NMR relaxation and molecular dynamics simulation. These two approaches present an entirely consistent view of the dynamic changes that occur in the protein backbone upon ligand binding. Increases in the amplitude of motions are observed throughout the protein, with the exception of a few residues in the binding site, which show restriction of dynamics. These counter-intuitive results imply that a localised binding event causes a global increase in the extent of protein dynamics on the pico- to nanosecond timescale. This global dynamic change constitutes a substantial favourable entropic contribution to the free energy of ligand binding. These results suggest that the structure and dynamics of ABP may be adapted to exploit dynamic changes to reduce the entropic costs of binding.
蛋白质动力学对分子识别现象有着重要但却鲜为人知的贡献。为了解决这一问题,我们利用核磁共振弛豫和分子动力学模拟,测量了阿拉伯糖结合蛋白(ABP)与其配体D-半乳糖相互作用时快速蛋白质动力学的变化。这两种方法对配体结合时蛋白质主链发生的动态变化呈现出完全一致的观点。除了结合位点的少数残基显示出动力学受限外,在整个蛋白质中均观察到运动幅度的增加。这些与直觉相悖的结果表明,在皮秒到纳秒的时间尺度上,局部的结合事件会导致蛋白质动力学程度的整体增加。这种整体的动态变化对配体结合自由能构成了相当可观的有利熵贡献。这些结果表明,ABP的结构和动力学可能经过了适应性调整,以利用动态变化来降低结合的熵成本。