Suppr超能文献

高效强化学习:计算理论、神经科学与机器人技术

Efficient reinforcement learning: computational theories, neuroscience and robotics.

作者信息

Kawato Mitsuo, Samejima Kazuyuki

机构信息

ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.

出版信息

Curr Opin Neurobiol. 2007 Apr;17(2):205-12. doi: 10.1016/j.conb.2007.03.004. Epub 2007 Mar 19.

Abstract

Reinforcement learning algorithms have provided some of the most influential computational theories for behavioral learning that depends on reward and penalty. After briefly reviewing supporting experimental data, this paper tackles three difficult theoretical issues that remain to be explored. First, plain reinforcement learning is much too slow to be considered a plausible brain model. Second, although the temporal-difference error has an important role both in theory and in experiments, how to compute it remains an enigma. Third, function of all brain areas, including the cerebral cortex, cerebellum, brainstem and basal ganglia, seems to necessitate a new computational framework. Computational studies that emphasize meta-parameters, hierarchy, modularity and supervised learning to resolve these issues are reviewed here, together with the related experimental data.

摘要

强化学习算法为依赖奖惩的行为学习提供了一些最具影响力的计算理论。在简要回顾支持性实验数据之后,本文探讨了三个有待探索的困难理论问题。首先,单纯的强化学习速度太慢,难以被视为一种合理的大脑模型。其次,尽管时间差分误差在理论和实验中都起着重要作用,但如何计算它仍然是个谜。第三,包括大脑皮层、小脑、脑干和基底神经节在内的所有脑区的功能,似乎都需要一个新的计算框架。本文回顾了强调元参数、层次结构、模块化和监督学习以解决这些问题的计算研究,以及相关的实验数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验