Suppr超能文献

临床试验中事件时间的威布尔预测。

Weibull prediction of event times in clinical trials.

作者信息

Ying Gui-shuang, Heitjan Daniel F

机构信息

Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Pharm Stat. 2008 Apr-Jun;7(2):107-20. doi: 10.1002/pst.271.

Abstract

In clinical trials with interim analyses planned at pre-specified event counts, one may wish to predict the times of these landmark events as a tool for logistical planning. Currently available methods use either a parametric approach based on an exponential model for survival (Bagiella and Heitjan, Statistics in Medicine 2001; 20:2055) or a non-parametric approach based on the Kaplan-Meier estimate (Ying et al., Clinical Trials 2004; 1:352). Ying et al. (2004) demonstrated the trade-off between bias and variance in these models; the exponential method is highly efficient when its assumptions hold but potentially biased when they do not, whereas the non-parametric method has minimal bias and is well calibrated under a range of survival models but typically gives wider prediction intervals and may fail to produce useful predictions early in the trial. As a potential compromise, we propose here to make predictions under a Weibull survival model. Computations are somewhat more difficult than with the simpler exponential model, but Monte Carlo studies show that predictions are robust under a broader range of assumptions. We demonstrate the method using data from a trial of immunotherapy for chronic granulomatous disease.

摘要

在预先指定事件计数时计划进行中期分析的临床试验中,人们可能希望预测这些标志性事件的发生时间,作为后勤规划的一种工具。目前可用的方法要么是基于生存指数模型的参数方法(Bagiella和Heitjan,《医学统计学》2001年;20:2055),要么是基于Kaplan-Meier估计的非参数方法(Ying等人,《临床试验》2004年;1:352)。Ying等人(2004年)展示了这些模型在偏差和方差之间的权衡;当指数方法的假设成立时,它效率很高,但当假设不成立时可能存在偏差,而非参数方法偏差最小,在一系列生存模型下校准良好,但通常会给出更宽的预测区间,并且在试验早期可能无法产生有用的预测。作为一种潜在的折衷方案,我们在此提议在威布尔生存模型下进行预测。计算比使用更简单的指数模型要困难一些,但蒙特卡罗研究表明,在更广泛的假设下预测是稳健的。我们使用慢性肉芽肿病免疫治疗试验的数据展示了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验