Ernst Udo, Rotermund David, Pawelzik Klaus
Institute for Theoretical Neurophysics, Otto-Hahn-Allee, Bremen, Germany.
Neural Comput. 2007 May;19(5):1313-43. doi: 10.1162/neco.2007.19.5.1313.
The speed and reliability of mammalian perception indicate that cortical computations can rely on very few action potentials per involved neuron. Together with the stochasticity of single-spike events in cortex, this appears to imply that large populations of redundant neurons are needed for rapid computations with action potentials. Here we demonstrate that very fast and precise computations can be realized also in small networks of stochastically spiking neurons. We present a generative network model for which we derive biologically plausible algorithms that perform spike-by-spike updates of the neuron's internal states and adaptation of its synaptic weights from maximizing the likelihood of the observed spike patterns. Paradigmatic computational tasks demonstrate the online performance and learning efficiency of our framework. The potential relevance of our approach as a model for cortical computation is discussed.
哺乳动物感知的速度和可靠性表明,皮层计算可以依赖每个参与神经元极少的动作电位。再加上皮层中单峰事件的随机性,这似乎意味着需要大量冗余神经元才能通过动作电位进行快速计算。在这里,我们证明了在随机发放脉冲的神经元组成的小网络中也能实现非常快速和精确的计算。我们提出了一个生成网络模型,并推导出生物学上合理的算法,这些算法通过最大化观察到的脉冲模式的可能性来对神经元的内部状态进行逐脉冲更新,并调整其突触权重。典型的计算任务展示了我们框架的在线性能和学习效率。我们还讨论了我们的方法作为皮层计算模型的潜在相关性。