Suppr超能文献

耐酸性的结构与机制探索:动力学稳定性促进嗜极端行为的进化。

Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior.

作者信息

Kelch Brian A, Eagen Kyle P, Erciyas F Pinar, Humphris Elisabeth L, Thomason Adam R, Mitsuiki Shinji, Agard David A

机构信息

Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158-2517, USA.

出版信息

J Mol Biol. 2007 May 4;368(3):870-83. doi: 10.1016/j.jmb.2007.02.032. Epub 2007 Feb 22.

Abstract

Kinetically stable proteins are unique in that their stability is determined solely by kinetic barriers rather than by thermodynamic equilibria. To better understand how kinetic stability promotes protein survival under extreme environmental conditions, we analyzed the unfolding behavior and determined the structure of Nocardiopsis alba Protease A (NAPase), an acid-resistant, kinetically stable protease, and compared these results with a neutrophilic homolog, alpha-lytic protease (alphaLP). Although NAPase and alphaLP have the same number of acid-titratable residues, kinetic studies revealed that the height of the unfolding free energy barrier for NAPase is less sensitive to acid than that of alphaLP, thereby accounting for NAPase's improved tolerance of low pH. A comparison of the alphaLP and NAPase structures identified multiple salt-bridges in the domain interface of alphaLP that were relocated to outer regions of NAPase, suggesting a novel mechanism of acid stability in which acid-sensitive electrostatic interactions are rearranged to similarly affect the energetics of both the native state and the unfolding transition state. An acid-stable variant of alphaLP in which a single interdomain salt-bridge is replaced with a corresponding intradomain NAPase salt-bridge shows a dramatic >15-fold increase in acid resistance, providing further evidence for this hypothesis. These observations also led to a general model of the unfolding transition state structure for alphaLP protease family members in which the two domains separate from each other while remaining relatively intact themselves. These results illustrate the remarkable utility of kinetic stability as an evolutionary tool for developing longevity over a broad range of harsh conditions.

摘要

动力学稳定的蛋白质具有独特之处,即它们的稳定性仅由动力学屏障决定,而非由热力学平衡决定。为了更好地理解动力学稳定性如何促进蛋白质在极端环境条件下的存活,我们分析了嗜盐碱诺卡氏菌蛋白酶A(NAPase)的解折叠行为并确定了其结构,NAPase是一种耐酸、动力学稳定的蛋白酶,我们将这些结果与嗜中性同源物α-溶素蛋白酶(alphaLP)进行了比较。尽管NAPase和alphaLP具有相同数量的可酸滴定残基,但动力学研究表明,NAPase解折叠自由能屏障的高度对酸的敏感性低于alphaLP,从而解释了NAPase对低pH的耐受性提高。对alphaLP和NAPase结构的比较发现,alphaLP结构域界面中的多个盐桥被重新定位到NAPase的外部区域,这表明了一种新的酸稳定性机制,即酸敏感的静电相互作用被重新排列,以类似的方式影响天然态和解折叠过渡态的能量。一种酸稳定的alphaLP变体,其中一个结构域间盐桥被相应的结构域内NAPase盐桥取代,其耐酸性显著提高了15倍以上,为这一假设提供了进一步的证据。这些观察结果还导致了alphaLP蛋白酶家族成员解折叠过渡态结构的一般模型,其中两个结构域彼此分离,同时自身保持相对完整。这些结果说明了动力学稳定性作为一种进化工具在广泛的恶劣条件下延长寿命方面的显著效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验