Maisonhaute Claude, Ogereau David, Hua-Van Aurélie, Capy Pierre
Laboratoire Evolution Génomes et Spéciation, CNRS Bat.13, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
Gene. 2007 May 15;393(1-2):116-26. doi: 10.1016/j.gene.2007.02.001. Epub 2007 Feb 16.
Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets of genes in the two cell lines suggesting they might be involved in the biological and physiological differences observed between Kc and S2 cell lines.
转座元件(TEs)在真核生物基因组中占很大一部分。在黑腹果蝇中,约20%的基因组对应于这种中度重复的DNA分散序列。一部分TEs由具有逆转录病毒样结构的元件组成,即LTR逆转座子,这是在果蝇基因组中最早被描述的TEs。有趣的是,在黑腹果蝇胚胎永生细胞培养基因组中,这些LTR逆转座子的拷贝数被发现高于果蝇基因组中的拷贝数,推测这是一些拷贝转座到新基因组位置的结果[波特,S.S.,小布罗林,W.J.,邓斯米尔,P.,鲁宾,G.M.,1979年。果蝇中412、copia和297分散重复基因家族元件的转座。《细胞》17卷,415 - 427页;朱纳科维奇,N.,迪·弗朗哥,C.,贝斯特 - 贝尔波姆,M.,埃沙利耶,G.,1988年。关于培养的果蝇细胞中类copia游牧元件的转座。《染色体》97卷,212 - 218页]。这表明如此多的转座改变了基因组组织,进而影响了靶向基因的表达。为了了解是什么导致了果蝇细胞培养基因组中TEs的转座,使用LTR逆转座子1731进行了一项寻找新转座拷贝的研究。对在果蝇测序基因组(y(1); cn(1)bw(1), sp(1)品系)中发现的1731全长元件与通过PCR在两种细胞系中扩增的1731全长元件进行了比较。所得数据表明,所有1731新拷贝都源自果蝇基因组中一个略有活性的单一拷贝,随后在培养细胞中被强烈激活;并且这个活性拷贝与一个新进化的基因组变体相关(卡尔米科娃,A.I.等人,2004年。逆转座子1731新进化基因组变体在果蝇基因组中的选择性扩增。《分子生物学与进化》21卷,2281 - 2289页)。此外,新拷贝在两种细胞系中被插入到不同的基因集中,这表明它们可能与在Kc和S2细胞系之间观察到的生物学和生理学差异有关。