Suppr超能文献

Deviations from compositional randomness in eukaryotic and prokaryotic proteins: the hypothesis of selective-stochastic stability and a principle of charge conservation.

作者信息

Holmquist R

出版信息

J Mol Evol. 1975 Mar 24;4(4):277-306. doi: 10.1007/BF01732532.

Abstract

Eight proteins of diverse lengths, functions, and origin, are examined for compositional non-randomness amino acid by amino acid. The proteins investigated are human fibrinopeptide A, guinea pig Insulin, rattlesnake cytochrome c, MS2 phage coat protein, rabbit triosephosphate isomerase, bovine pancreatic deoxyribonuclease A, bovine glutamate dehydrogenase, and Bacillus thermoproteolyticus thermolysin. As a result of this study the experimentally testable hypothesis is put forth that for a large class of proteins the ratio of that fraction of the molecule which exhibits compositional non-randomness to that fraction which does not is on the average, stable about a mean value (estimated as 0.32 plus or minus 0.17) and (nearly) independent of protein length. Stochastic and selective evolutionary forces are viewed as interacting rather than independent phenomena. With respect to amino acid composition, this coupling ameliorates the current controversy over Darwinian vs. non-Darwinian evolution, selectionist vs. neutralist, in favor of neither: Within the context of the quantitative data, the evolution of real proteins is seen as a compromise between the two viewpoints, both important. The compositional fluctuations of the electrically charged amino acids glutamic and aspartic acid, lysine and arginine, are examined in depth for over eighty protein families, both prokaryotic and eukaryotic. For both taxa, each of the acidic amino acids is present in amounts roughly twice that predicted from the genetic code. The presence of an excess of glutamic acid is independent of the presence of an excess of aspartic acid and vice versa.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验