Suppr超能文献

基于可见/近红外光谱的转基因番茄鉴别

Discrimination of transgenic tomatoes based on visible/near-infrared spectra.

作者信息

Xie Lijuan, Ying Yibin, Ying Tiejin, Yu Haiyan, Fu Xiaping

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 268 Kaixuan St., 310029 Hangzhou, PR China.

出版信息

Anal Chim Acta. 2007 Feb 19;584(2):379-84. doi: 10.1016/j.aca.2006.11.071. Epub 2006 Dec 3.

Abstract

VIS-NIR spectroscopy combined with multivariate analysis after the appropriate spectral data pre-treatment has been proved to be a very powerful tool for judgment of the relative pattern of the objects that have very similar properties. In this study, seventy transgenic tomatoes with antisense LeETR2 and 94 of their parents, non-transgenic ones were measured in VIS-NIR diffuse reflectance mode. Principal component analysis (PCA), discriminant analysis (DA) and partial least-squares discriminant analysis (PLSDA) were applied to classify tomatoes with different genes into two groups. Calibrations were developed using PLS regression with the leave-one-out cross-validation technique. The results show that differences between transgenic and non-transgenic tomatoes do exist and excellent classification can be obtained after optimizing spectral pre-treatment. The correct classifications for transgenic and non-transgenic tomatoes were both 100% using PLSDA after derivative spectral pre-treatment. The raw spectra with PLSDA model after the second derivative pre-treatment had the best satisfactory calibration and prediction abilities, with r(c)=0.97964, root mean square error of calibration (RMSEC)=0.099, r(cv)=0.97963, root mean square error of cross-validation (RMSECV)=0.0993 and a factor. The results in the present study show VIS-NIR spectroscopy together with chemometrics techniques could be used to differentiate transgenic tomato, which offers the benefit of avoiding time-consuming, costly and laborious chemical and sensory analysis.

摘要

可见-近红外光谱结合适当的光谱数据预处理后的多元分析,已被证明是判断具有非常相似性质的物体相对模式的一种非常强大的工具。在本研究中,对70个反义LeETR2转基因番茄及其94个亲本(非转基因番茄)进行了可见-近红外漫反射模式测量。应用主成分分析(PCA)、判别分析(DA)和偏最小二乘判别分析(PLSDA)将不同基因的番茄分为两组。使用偏最小二乘回归和留一法交叉验证技术建立校准模型。结果表明,转基因番茄和非转基因番茄之间确实存在差异,优化光谱预处理后可获得良好的分类效果。经导数光谱预处理后,使用PLSDA对转基因和非转基因番茄的正确分类率均为100%。经二阶导数预处理后的原始光谱与PLSDA模型具有最佳的校准和预测能力,校准相关系数r(c)=0.97964,校准均方根误差(RMSEC)=0.099,交叉验证相关系数r(cv)=0.97963,交叉验证均方根误差(RMSECV)=0.0993以及一个因子。本研究结果表明,可见-近红外光谱结合化学计量学技术可用于区分转基因番茄,这避免了耗时、昂贵且费力的化学和感官分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验