Suppr超能文献

利用可见-近红外光谱和机器学习方法鉴别转基因油菜(L.)及其杂种。

Discrimination of Transgenic Canola ( L.) and their Hybrids with using Vis-NIR Spectroscopy and Machine Learning Methods.

机构信息

Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.

Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi AK-039-5028, Ghana.

出版信息

Int J Mol Sci. 2021 Dec 25;23(1):220. doi: 10.3390/ijms23010220.

Abstract

In recent years, the rapid development of genetically modified (GM) technology has raised concerns about the safety of GM crops and foods for human health and the ecological environment. Gene flow from GM crops to other crops, especially in the Brassicaceae family, might pose a threat to the environment due to their weediness. Hence, finding reliable, quick, and low-cost methods to detect and monitor the presence of GM crops and crop products is important. In this study, we used visible near-infrared (Vis-NIR) spectroscopy for the effective discrimination of GM and non-GM , and F1 hybrids ( X GM ). Initially, Vis-NIR spectra were collected from the plants, and the spectra were preprocessed. A combination of different preprocessing methods (four methods) and various modeling approaches (eight methods) was used for effective discrimination. Among the different combinations, the Savitzky-Golay and Support Vector Machine combination was found to be an optimal model in the discrimination of GM, non-GM, and hybrid plants with the highest accuracy rate (100%). The use of a Convolutional Neural Network with Normalization resulted in 98.9%. The same higher accuracy was found in the use of Gradient Boosted Trees and Fast Large Margin approaches. Later, phenolic acid concentration among the different plants was assessed using GC-MS analysis. Partial least squares regression analysis of Vis-NIR spectra and biochemical characteristics showed significant correlations in their respective changes. The results showed that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used for the effective discrimination of GM and non-GM , and F1 hybrids. Biochemical composition analysis can also be combined with the Vis-NIR spectra for efficient discrimination.

摘要

近年来,基因改良(GM)技术的快速发展引起了人们对 GM 作物和食品对人类健康和生态环境安全的担忧。GM 作物的基因流向其他作物,特别是在十字花科,由于其杂草性,可能对环境构成威胁。因此,寻找可靠、快速和低成本的方法来检测和监测 GM 作物和作物产品的存在非常重要。在这项研究中,我们使用可见近红外(Vis-NIR)光谱有效地对 GM 和非 GM 以及 F1 杂种(XGM)进行了区分。最初,从植物中采集 Vis-NIR 光谱,并对光谱进行预处理。使用不同的预处理方法(四种方法)和各种建模方法(八种方法)的组合进行了有效的区分。在不同的组合中,发现 Savitzky-Golay 和支持向量机的组合是区分 GM、非 GM 和杂种植物的最佳模型,准确率最高(100%)。使用具有归一化功能的卷积神经网络的准确率为 98.9%。使用梯度提升树和快速大间隔方法也发现了相同的更高准确率。之后,使用 GC-MS 分析评估了不同植物之间的酚酸浓度。Vis-NIR 光谱和生化特征的偏最小二乘回归分析显示出它们各自变化的显著相关性。结果表明,手持式 Vis-NIR 光谱结合化学计量学分析可有效区分 GM 和非 GM 以及 F1 杂种。生化成分分析也可以与 Vis-NIR 光谱结合使用,以实现有效的区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c06/8745187/d47fa91d489e/ijms-23-00220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验