Hui Elliot E, Bhatia Sangeeta N
Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA.
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5722-6. doi: 10.1073/pnas.0608660104. Epub 2007 Mar 27.
The development and function of living tissues depends largely on interactions between cells that can vary in both time and space; however, temporal control of cell-cell interaction is experimentally challenging. By using a micromachined silicon substrate with moving parts, we demonstrate the dynamic regulation of cell-cell interactions via direct manipulation of adherent cells with micrometer-scale precision. We thereby achieve mechanical control of both tissue composition and spatial organization. As a case study, we demonstrate the utility of this tool in deconstructing the dynamics of intercellular communication between hepatocytes and supportive stromal cells in coculture. Our findings indicate that the maintenance of the hepatocellular phenotype by stroma requires direct contact for a limited time ( approximately hours) followed by a sustained soluble signal that has an effective range of <400 microm. This platform enables investigation of dynamic cell-cell interaction in a multitude of applications, spanning embryogenesis, homeostasis, and pathogenic processes.
活组织的发育和功能在很大程度上取决于细胞间的相互作用,这种相互作用在时间和空间上都可能有所不同;然而,对细胞间相互作用进行时间控制在实验上具有挑战性。通过使用带有可移动部件的微加工硅基片,我们展示了通过以微米级精度直接操纵贴壁细胞来动态调节细胞间相互作用。我们从而实现了对组织组成和空间组织的机械控制。作为一个案例研究,我们展示了该工具在解析共培养中肝细胞与支持性基质细胞之间细胞间通讯动态方面的实用性。我们的研究结果表明,基质对肝细胞表型的维持需要在有限时间(约数小时)内进行直接接触,随后是一种有效范围小于400微米的持续可溶性信号。该平台能够在众多应用中研究动态细胞间相互作用,涵盖胚胎发育、内稳态和致病过程。