Suppr超能文献

无冗余备份:基因相互作用揭示了重复基因丢失的代价。

Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.

作者信息

Ihmels Jan, Collins Sean R, Schuldiner Maya, Krogan Nevan J, Weissman Jonathan S

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2542, USA.

出版信息

Mol Syst Biol. 2007;3:86. doi: 10.1038/msb4100127. Epub 2007 Mar 27.

Abstract

Many genes can be deleted with little phenotypic consequences. By what mechanism and to what extent the presence of duplicate genes in the genome contributes to this robustness against deletions has been the subject of considerable interest. Here, we exploit the availability of high-density genetic interaction maps to provide direct support for the role of backup compensation, where functionally overlapping duplicates cover for the loss of their paralog. However, we find that the overall contribution of duplicates to robustness against null mutations is low ( approximately 25%). The ability to directly identify buffering paralogs allowed us to further study their properties, and how they differ from non-buffering duplicates. Using environmental sensitivity profiles as well as quantitative genetic interaction spectra as high-resolution phenotypes, we establish that even duplicate pairs with compensation capacity exhibit rich and typically non-overlapping deletion phenotypes, and are thus unable to comprehensively cover against loss of their paralog. Our findings reconcile the fact that duplicates can compensate for each other's loss under a limited number of conditions with the evolutionary instability of genes whose loss is not associated with a phenotypic penalty.

摘要

许多基因被删除后几乎没有表型后果。基因组中重复基因的存在通过何种机制以及在多大程度上导致了这种对基因删除的稳健性,一直是人们相当感兴趣的话题。在这里,我们利用高密度遗传相互作用图谱来直接支持备份补偿的作用,即功能重叠的重复基因弥补其旁系同源基因的缺失。然而,我们发现重复基因对抵抗无效突变的稳健性的总体贡献很低(约25%)。直接识别缓冲旁系同源基因的能力使我们能够进一步研究它们的特性,以及它们与非缓冲重复基因的差异。利用环境敏感性图谱以及定量遗传相互作用谱作为高分辨率表型,我们确定,即使具有补偿能力的重复基因对也表现出丰富且通常不重叠的删除表型,因此无法全面弥补其旁系同源基因的缺失。我们的研究结果调和了这样一个事实,即重复基因在有限数量的条件下可以相互补偿对方的缺失,同时也解释了那些缺失时不伴随表型惩罚的基因在进化上的不稳定性。

相似文献

1
Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.
Mol Syst Biol. 2007;3:86. doi: 10.1038/msb4100127. Epub 2007 Mar 27.
2
Role of duplicate genes in genetic robustness against null mutations.
Nature. 2003 Jan 2;421(6918):63-6. doi: 10.1038/nature01198.
3
The role of domain redundancy in genetic robustness against null mutations.
J Mol Biol. 2006 Sep 15;362(2):184-91. doi: 10.1016/j.jmb.2006.07.033. Epub 2006 Jul 25.
4
Tackling redundancy: genetic mechanisms underlying paralog compensation in plants.
New Phytol. 2023 Nov;240(4):1381-1389. doi: 10.1111/nph.19267. Epub 2023 Sep 19.
5
Genetic interactions in yeast: is robustness going bust?
Mol Syst Biol. 2007;3:97. doi: 10.1038/msb4100146. Epub 2007 Mar 27.
6
Genetic robustness and functional evolution of gene duplicates.
Nucleic Acids Res. 2014 Feb;42(4):2405-14. doi: 10.1093/nar/gkt1200. Epub 2013 Nov 27.
7
Network hubs buffer environmental variation in Saccharomyces cerevisiae.
PLoS Biol. 2008 Nov 4;6(11):e264. doi: 10.1371/journal.pbio.0060264.
8
Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae.
Genome Res. 2014 Nov;24(11):1830-41. doi: 10.1101/gr.176792.114. Epub 2014 Aug 22.
9
The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast.
Genome Res. 2008 Jul;18(7):1092-9. doi: 10.1101/gr.076174.108. Epub 2008 May 7.
10
The cellular robustness by genetic redundancy in budding yeast.
PLoS Genet. 2010 Nov 4;6(11):e1001187. doi: 10.1371/journal.pgen.1001187.

引用本文的文献

1
Understanding flux switching in metabolic networks through an analysis of synthetic lethals.
NPJ Syst Biol Appl. 2024 Sep 17;10(1):104. doi: 10.1038/s41540-024-00426-5.
2
Zebrafish: unraveling genetic complexity through duplicated genes.
Dev Genes Evol. 2024 Dec;234(2):99-116. doi: 10.1007/s00427-024-00720-6. Epub 2024 Jul 30.
3
Active compensation for changes in TDH3 expression mediated by direct regulators of TDH3 in Saccharomyces cerevisiae.
PLoS Genet. 2023 Dec 13;19(12):e1011078. doi: 10.1371/journal.pgen.1011078. eCollection 2023 Dec.
4
The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation.
Nat Commun. 2023 Nov 30;14(1):7912. doi: 10.1038/s41467-023-43724-y.
6
Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability.
Phenomics. 2021 Dec 27;2(2):79-87. doi: 10.1007/s43657-021-00030-1. eCollection 2022 Apr.
7
Evolutionary conservation of sequence motifs at sites of protein modification.
J Biol Chem. 2023 May;299(5):104617. doi: 10.1016/j.jbc.2023.104617. Epub 2023 Mar 16.
8
A toolbox for systematic discovery of stable and transient protein interactors in baker's yeast.
Mol Syst Biol. 2023 Feb 10;19(2):e11084. doi: 10.15252/msb.202211084. Epub 2023 Jan 18.
9
Early effects of gene duplication on the robustness and phenotypic variability of gene regulatory networks.
BMC Bioinformatics. 2022 Nov 28;23(1):509. doi: 10.1186/s12859-022-05067-1.
10
Individual Genetic Heterogeneity.
Genes (Basel). 2022 Sep 10;13(9):1626. doi: 10.3390/genes13091626.

本文引用的文献

1
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
Nature. 2007 Apr 12;446(7137):806-10. doi: 10.1038/nature05649. Epub 2007 Feb 21.
2
Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae.
Nature. 2006 Oct 26;443(7114):1003-7. doi: 10.1038/nature05205.
4
Global analysis of gene function in yeast by quantitative phenotypic profiling.
Mol Syst Biol. 2006;2:2006.0001. doi: 10.1038/msb4100043. Epub 2006 Jan 17.
5
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Nature. 2006 Jun 15;441(7095):840-6. doi: 10.1038/nature04785. Epub 2006 May 14.
6
A DNA integrity network in the yeast Saccharomyces cerevisiae.
Cell. 2006 Mar 10;124(5):1069-81. doi: 10.1016/j.cell.2005.12.036. Epub 2006 Feb 16.
7
Transcriptional reprogramming and backup between duplicate genes: is it a genomewide phenomenon?
Genetics. 2006 Feb;172(2):1363-7. doi: 10.1534/genetics.105.049890. Epub 2005 Dec 1.
9
Role of selection in fixation of gene duplications.
J Theor Biol. 2006 Mar 21;239(2):141-51. doi: 10.1016/j.jtbi.2005.08.033. Epub 2005 Oct 20.
10
Higher duplicability of less important genes in yeast genomes.
Mol Biol Evol. 2006 Jan;23(1):144-51. doi: 10.1093/molbev/msj015. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验