Suppr超能文献

使用高斯混合模型-库尔贝克-莱布勒散度框架对医学图像存档与通信系统中的医学图像进行分类和检索。

Medical image categorization and retrieval for PACS using the GMM-KL framework.

作者信息

Greenspan Hayit, Pinhas Adi T

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.

出版信息

IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):190-202. doi: 10.1109/titb.2006.874191.

Abstract

This paper presents an image representation and matching framework for image categorization in medical image archives. Categorization enables one to determine automatically, based on the image content, the examined body region and imaging modality. It is a basic step in content-based image retrieval (CBIR) systems, the goal of which is to augment text-based search with visual information analysis. CBIR systems are currently being integrated with picture archiving and communication systems for increasing the overall search capabilities and tools available to radiologists. The proposed methodology is comprised of a continuous and probabilistic image representation scheme using Gaussian mixture modeling (GMM) along with information-theoretic image matching via the Kullback-Leibler (KL) measure. The GMM-KL framework is used for matching and categorizing X-ray images by body regions. A multidimensional feature space is used to represent the image input, including intensity, texture, and spatial information. Unsupervised clustering via the GMM is used to extract coherent regions in feature space that are then used in the matching process. A dominant characteristic of the radiological images is their poor contrast and large intensity variations. This presents a challenge to matching among the images, and is handled via an illumination-invariant representation. The GMM-KL framework is evaluated for image categorization and image retrieval on a dataset of 1500 radiological images. A classification rate of 97.5% was achieved. The classification results compare favorably with reported global and local representation schemes. Precision versus recall curves indicate a strong retrieval result as compared with other state-of-the-art retrieval techniques. Finally, category models are learned and results are presented for comparing images to learned category models.

摘要

本文提出了一种用于医学图像存档中图像分类的图像表示与匹配框架。分类能够使人们基于图像内容自动确定被检查的身体部位和成像方式。这是基于内容的图像检索(CBIR)系统中的一个基本步骤,该系统的目标是通过视觉信息分析增强基于文本的搜索。目前,CBIR系统正与图像存档和通信系统集成,以提高放射科医生可用的整体搜索能力和工具。所提出的方法由一种使用高斯混合模型(GMM)的连续且概率性的图像表示方案以及通过库尔贝克-莱布勒(KL)度量进行的信息论图像匹配组成。GMM-KL框架用于按身体部位对X射线图像进行匹配和分类。一个多维特征空间用于表示图像输入,包括强度、纹理和空间信息。通过GMM进行的无监督聚类用于在特征空间中提取连贯区域,然后将其用于匹配过程。放射图像的一个主要特征是其对比度差和强度变化大。这给图像之间的匹配带来了挑战,并通过一种光照不变表示来处理。在一个包含1500张放射图像的数据集上对GMM-KL框架进行了图像分类和图像检索评估。实现了97.5%的分类率。分类结果与已报道的全局和局部表示方案相比具有优势。精确率与召回率曲线表明,与其他最先进的检索技术相比,检索结果很强。最后,学习了类别模型,并展示了将图像与学习到的类别模型进行比较的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验