Syed Zeeshan, Leeds Daniel, Curtis Dorothy, Nesta Francesca, Levine Robert A, Guttag John
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
IEEE Trans Biomed Eng. 2007 Apr;54(4):651-62. doi: 10.1109/TBME.2006.889189.
Skilled cardiologists perform cardiac auscultation, acquiring and interpreting heart sounds, by implicitly carrying out a sequence of steps. These include discarding clinically irrelevant beats, selectively tuning in to particular frequencies and aggregating information across time to make a diagnosis. In this paper, we formalize a series of analytical stages for processing heart sounds, propose algorithms to enable computers to approximate these steps, and investigate the effectiveness of each step in extracting relevant information from actual patient data. Through such reasoning, we provide insight into the relative difficulty of the various tasks involved in the accurate interpretation of heart sounds. We also evaluate the contribution of each analytical stage in the overall assessment of patients. We expect our framework and associated software to be useful to educators wanting to teach cardiac auscultation, and to primary care physicians, who can benefit from presentation tools for computer-assisted diagnosis of cardiac disorders. Researchers may also employ the comprehensive processing provided by our framework to develop more powerful, fully automated auscultation applications.
技术娴熟的心脏病专家通过隐含地执行一系列步骤来进行心脏听诊,获取并解读心音。这些步骤包括摒弃临床上不相关的心跳,有选择地调谐到特定频率,并在一段时间内汇总信息以做出诊断。在本文中,我们将处理心音的一系列分析阶段形式化,提出算法以使计算机能够近似这些步骤,并研究每个步骤从实际患者数据中提取相关信息的有效性。通过这样的推理,我们深入了解了准确解读心音所涉及的各种任务的相对难度。我们还评估了每个分析阶段在患者整体评估中的贡献。我们期望我们的框架及相关软件对想要教授心脏听诊的教育工作者以及能够从心脏疾病计算机辅助诊断的展示工具中受益的初级保健医生有用。研究人员也可以利用我们框架提供的全面处理来开发更强大的全自动听诊应用程序。