Avendaño-Valencia D, Martinez-Tabares F, Acosta-Medina D, Godino-Llorente I, Castellanos-Dominguez G
G. Control y Procesamiento Digital de Señales, Universidad Nacional de Colombia.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5665-8. doi: 10.1109/IEMBS.2009.5333772.
Discrimination of murmurs in heart sounds is accomplished by means of time-frequency representations (TFR) which help to deal with non-stationarity. Nevertheless, classification with TFR is not straightforward given their large dimension and redundancy. In this paper we compare several methodologies to apply Principal Component Analysis (PCA) to TFR as a dimensional reduction scheme, which differ in the form that features are represented. Besides, we propose a method which maximizes information among TFR preserving information within TFRs. Results show that the methodologies that represent TFRs as matrices improve discrimination of heart murmurs, and that the proposed methodology shrinks variability of the results.
通过时频表示(TFR)来实现心音中杂音的辨别,这有助于处理非平稳性。然而,鉴于其维度大且冗余,使用TFR进行分类并非易事。在本文中,我们比较了几种将主成分分析(PCA)应用于TFR作为降维方案的方法,这些方法在特征表示形式上有所不同。此外,我们提出了一种方法,该方法在保留TFR内信息的同时最大化TFR之间的信息。结果表明,将TFR表示为矩阵的方法提高了心脏杂音的辨别能力,并且所提出的方法缩小了结果的变异性。