Suppr超能文献

基于规则的分类树的心音自动诊断

Automated Diagnosis of Heart Sounds Using Rule-Based Classification Tree.

作者信息

Karar Mohamed Esmail, El-Khafif Sahar H, El-Brawany Mohamed A

机构信息

Faculty of Electronic Engineering (FEE), Menoufia University, Menouf, 32952, Egypt.

出版信息

J Med Syst. 2017 Apr;41(4):60. doi: 10.1007/s10916-017-0704-9. Epub 2017 Mar 1.

Abstract

In order to assist the diagnosis procedure of heart sound signals, this paper presents a new automated method for classifying the heart status using a rule-based classification tree into normal and three abnormal cases; namely the aortic valve stenosis, aortic insufficient, and ventricular septum defect. The developed method includes three main steps as follows. First, one cycle of the heart sound signals is automatically detected and segmented based on time properties of the heart signals. Second, the segmented cycle is preprocessed with the discrete wavelet transform and then largest Lyapunov exponents are calculated to generate the dynamical features of heart sound time series. Finally, a rule-based classification tree is fed by these Lyapunov exponents to give the final decision of the heart health status. The developed method has been tested successfully on twenty-two datasets of normal heart sounds and murmurs with success rate of 95.5%. The resulting error can be easily corrected by modifying the classification rules; consequently, the accuracy of automated heart sounds diagnosis is further improved.

摘要

为辅助心音信号的诊断过程,本文提出一种新的自动化方法,使用基于规则的分类树将心脏状态分为正常和三种异常情况,即主动脉瓣狭窄、主动脉瓣关闭不全和室间隔缺损。所开发的方法包括以下三个主要步骤。首先,根据心脏信号的时间特性自动检测并分割一个心动周期的心音信号。其次,对分割后的周期进行离散小波变换预处理,然后计算最大Lyapunov指数以生成心音时间序列的动态特征。最后,将这些Lyapunov指数输入基于规则的分类树,以给出心脏健康状态的最终判定。所开发的方法已在22个正常心音和杂音数据集上成功测试,成功率为95.5%。通过修改分类规则可以轻松纠正产生的误差,从而进一步提高心音自动诊断的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验