Suppr超能文献

通过cdc25中的突变以及参与转录和翻译控制的基因抑制粟酒裂殖酵母cut12.1细胞周期缺陷。

Suppression of the Schizosaccharomyces pombe cut12.1 cell-cycle defect by mutations in cdc25 and genes involved in transcriptional and translational control.

作者信息

Tallada Victor A, Bridge Alan J, Emery Patrick A, Hagan Iain M

机构信息

CRUK Cell Division Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom.

出版信息

Genetics. 2007 May;176(1):73-83. doi: 10.1534/genetics.107.072090. Epub 2007 Apr 3.

Abstract

Cdc25 phosphatase primes entry to mitosis by removing the inhibitory phosphate that is transferred to mitosis promoting factor (MPF) by Wee1 related kinases. A positive feedback loop then boosts Cdc25 and represses Wee1 activities to drive full-scale MPF activation and commitment to mitosis. Dominant mutations in the Schizosaccharomyces pombe spindle pole body (SPB) component Cut12 enable cdc25.22 mutants to overcome a G2 arrest at 36 degrees and enter mitosis. The recessive temperature-sensitive cut12.1 mutation results in the formation of monopolar spindles in which the spindle pole marker Sad1 is enriched on the nonfunctional SPB at 36 degrees . We identified mutations at five loci that suppressed the lethality of the recessive cut12.1 mutation at 36 degrees and conferred lethality at 20 degrees . Three of the five mutations led to the formation of monopolar spindles at restrictive temperatures, affected cell size at commitment to mitosis, and generated multiple Sad1 foci at nuclear periphery. The five loci, tfb2.rt1, tfb5.rt5, pla1.rt3, rpl4301.rt4, and rot2.1, and multicopy suppressors, including tfb1(+) and dbp10(+), are involved in transcription, translation, or RNA processing, prompting us to establish that elevating Cdc25 levels with the dominant cdc25.d1 allele, suppressed cut12.1. Thus, rot mutants provide a further link between protein production and cell-cycle progression.

摘要

Cdc25磷酸酶通过去除由Wee1相关激酶转移至有丝分裂促进因子(MPF)上的抑制性磷酸基团,启动进入有丝分裂的进程。随后,一个正反馈回路增强Cdc25活性并抑制Wee1活性,以驱动MPF全面激活并促使细胞进入有丝分裂。粟酒裂殖酵母纺锤体极体(SPB)组分Cut12中的显性突变使cdc25.22突变体能够克服在36摄氏度时的G2期阻滞并进入有丝分裂。隐性温度敏感型cut12.1突变导致单极纺锤体的形成,其中纺锤体极标记Sad1在36摄氏度时富集于无功能的SPB上。我们在五个位点鉴定出突变,这些突变抑制了隐性cut12.1突变在36摄氏度时的致死性,并在20摄氏度时导致致死性。这五个突变中的三个在限制温度下导致单极纺锤体的形成,影响细胞进入有丝分裂时的大小,并在核周边产生多个Sad1焦点。这五个位点,即tfb2.rt1、tfb5.rt5、pla1.rt3、rpl4301.rt4和rot2.1,以及多拷贝抑制子,包括tfb1(+)和dbp10(+),都参与转录、翻译或RNA加工,这促使我们确定用显性cdc25.d1等位基因提高Cdc25水平可抑制cut12.1。因此,rot突变体在蛋白质产生与细胞周期进程之间建立了进一步的联系。

相似文献

3
Removal of centrosomal PP1 by NIMA kinase unlocks the MPF feedback loop to promote mitotic commitment in S. pombe.
Curr Biol. 2013 Feb 4;23(3):213-22. doi: 10.1016/j.cub.2012.12.039. Epub 2013 Jan 17.
5
Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast.
Nature. 2005 May 26;435(7041):507-12. doi: 10.1038/nature03590.
6
The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control.
Genes Dev. 1998 Apr 1;12(7):927-42. doi: 10.1101/gad.12.7.927.
10
The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body.
J Cell Sci. 2014 Aug 15;127(Pt 16):3625-40. doi: 10.1242/jcs.154997. Epub 2014 Jun 24.

引用本文的文献

1
CDK activity at the centrosome regulates the cell cycle.
Cell Rep. 2024 Apr 23;43(4):114066. doi: 10.1016/j.celrep.2024.114066. Epub 2024 Apr 4.
2
An updated view on the centrosome as a cell cycle regulator.
Cell Div. 2022 Feb 14;17(1):1. doi: 10.1186/s13008-022-00077-0.
3
Dialogue between centrosomal entrance and exit scaffold pathways regulates mitotic commitment.
J Cell Biol. 2017 Sep 4;216(9):2795-2812. doi: 10.1083/jcb.201702172. Epub 2017 Aug 3.
4
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression.
Sci Rep. 2016 Jun 2;6:26580. doi: 10.1038/srep26580.
5
The centrosome and its duplication cycle.
Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a015800. doi: 10.1101/cshperspect.a015800.
6
Centrosomes as signalling centres.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 5;369(1650). doi: 10.1098/rstb.2013.0464.
7
The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body.
J Cell Sci. 2014 Aug 15;127(Pt 16):3625-40. doi: 10.1242/jcs.154997. Epub 2014 Jun 24.
8
Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis by downregulating Wee1 kinase.
J Cell Sci. 2013 Nov 1;126(Pt 21):4995-5004. doi: 10.1242/jcs.132845. Epub 2013 Sep 4.
9
Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast.
Nat Cell Biol. 2013 Jan;15(1):88-95. doi: 10.1038/ncb2633. Epub 2012 Dec 9.
10
The telomeric transcriptome of Schizosaccharomyces pombe.
Nucleic Acids Res. 2012 Apr;40(7):2995-3005. doi: 10.1093/nar/gkr1153. Epub 2011 Dec 1.

本文引用的文献

1
The Cid1 family of non-canonical poly(A) polymerases.
Yeast. 2006 Oct 15;23(13):991-1000. doi: 10.1002/yea.1408.
2
SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):782-8. doi: 10.1038/nrm2003. Epub 2006 Aug 23.
3
Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts.
Mol Cell. 2006 Apr 7;22(1):83-91. doi: 10.1016/j.molcel.2006.02.022.
4
TOR signaling in growth and metabolism.
Cell. 2006 Feb 10;124(3):471-84. doi: 10.1016/j.cell.2006.01.016.
6
The DEAD-box protein family of RNA helicases.
Gene. 2006 Feb 15;367:17-37. doi: 10.1016/j.gene.2005.10.019. Epub 2005 Dec 7.
7
Epistatic gene interactions in the control of division in fission yeast.
Nature. 1979 May 31;279(5712):428-30. doi: 10.1038/279428a0.
8
Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast.
Nature. 2005 May 26;435(7041):507-12. doi: 10.1038/nature03590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验