Suppr超能文献

无机磷酸盐缺乏通过逆行转运导致酿酒酵母中的tRNA在细胞核内积累。

Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae.

作者信息

Hurto Rebecca L, Tong Amy Hin Yan, Boone Charles, Hopper Anita K

机构信息

Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Genetics. 2007 Jun;176(2):841-52. doi: 10.1534/genetics.106.069732. Epub 2007 Apr 3.

Abstract

Nuclear export of tRNA is an essential eukaryotic function, yet the one known yeast tRNA nuclear exporter, Los1, is nonessential. Moreover recent studies have shown that tRNAs can move retrograde from the cytosol to the nucleus by an undefined process. Therefore, additional gene products involved in tRNA nucleus-cytosol dynamics have yet to be identified. Synthetic genetic array (SGA) analysis was employed to identify proteins involved in Los1-independent tRNA transport and in regulating tRNA nucleus-cytosol distribution. These studies uncovered synthetic interactions between los1Delta and pho88Delta involved in inorganic phopsphate uptake. Further analysis revealed that inorganic phosphate deprivation causes transient, temperature-dependent nuclear accumulation of mature cytoplasmic tRNA within nuclei via a Mtr10- and retrograde-dependent pathway, providing a novel connection between tRNA subcellular dynamics and phosphate availability.

摘要

转运RNA(tRNA)的核输出是真核生物的一项基本功能,然而,已知的酵母tRNA核输出蛋白Los1并非必不可少。此外,最近的研究表明,tRNA可以通过一个未明确的过程从细胞质逆行至细胞核。因此,尚未鉴定出参与tRNA核-质动态变化的其他基因产物。利用合成遗传阵列(SGA)分析来鉴定参与不依赖Los1的tRNA转运以及调节tRNA核-质分布的蛋白质。这些研究揭示了参与无机磷酸盐摄取的los1Δ和pho88Δ之间的合成相互作用。进一步分析表明,无机磷酸盐缺乏会通过依赖Mtr10和逆行的途径导致成熟细胞质tRNA在细胞核内短暂、温度依赖性的核积累,这为tRNA亚细胞动态变化与磷酸盐可用性之间提供了一种新的联系。

相似文献

1
Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae.
Genetics. 2007 Jun;176(2):841-52. doi: 10.1534/genetics.106.069732. Epub 2007 Apr 3.
2
A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomycescerevisiae.
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5412-7. doi: 10.1073/pnas.082682699.
3
Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics.
Genes Dev. 2015 Dec 15;29(24):2633-44. doi: 10.1101/gad.269803.115.
4
tRNA turnaround.
Mol Cell. 2005 Aug 5;19(3):292-4. doi: 10.1016/j.molcel.2005.07.009.
5
Nup100 regulates replicative life span by mediating the nuclear export of specific tRNAs.
RNA. 2017 Mar;23(3):365-377. doi: 10.1261/rna.057612.116. Epub 2016 Dec 8.
6
tRNA actively shuttles between the nucleus and cytosol in yeast.
Science. 2005 Jul 1;309(5731):140-2. doi: 10.1126/science.1113346. Epub 2005 May 19.
9
Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export.
Genes Dev. 2017 Nov 1;31(21):2186-2198. doi: 10.1101/gad.305904.117. Epub 2017 Dec 6.
10
Retrograde nuclear accumulation of cytoplasmic tRNA in rat hepatoma cells in response to amino acid deprivation.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8845-50. doi: 10.1073/pnas.0700765104. Epub 2007 May 14.

引用本文的文献

1
Antibody screening reveals antigenic proteins involved in and human interaction.
Front Cell Infect Microbiol. 2023 Jun 19;13:1118979. doi: 10.3389/fcimb.2023.1118979. eCollection 2023.
2
The life and times of a tRNA.
RNA. 2023 Jul;29(7):898-957. doi: 10.1261/rna.079620.123. Epub 2023 Apr 13.
3
The occurrence order and cross-talk of different tRNA modifications.
Sci China Life Sci. 2021 Sep;64(9):1423-1436. doi: 10.1007/s11427-020-1906-4. Epub 2021 Apr 19.
4
Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology.
Front Mol Biosci. 2020 Dec 17;7:610617. doi: 10.3389/fmolb.2020.610617. eCollection 2020.
5
From canonical to modified nucleotides: balancing translation and metabolism.
Crit Rev Biochem Mol Biol. 2020 Dec;55(6):525-540. doi: 10.1080/10409238.2020.1818685. Epub 2020 Sep 16.
6
Transfer RNAs: diversity in form and function.
RNA Biol. 2021 Mar;18(3):316-339. doi: 10.1080/15476286.2020.1809197. Epub 2020 Sep 9.
7
Absence of AfuXpot, the yeast Los1 homologue, limits Aspergillus fumigatus growth under amino acid deprived condition.
World J Microbiol Biotechnol. 2020 Jan 30;36(2):28. doi: 10.1007/s11274-020-2805-8.
8
Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response.
Cell Rep. 2019 Mar 19;26(12):3416-3428.e5. doi: 10.1016/j.celrep.2019.02.077.
9
tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs.
Front Genet. 2019 Feb 20;10:96. doi: 10.3389/fgene.2019.00096. eCollection 2019.
10
tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location.
Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):373-386. doi: 10.1016/j.bbagrm.2017.11.007. Epub 2017 Nov 28.

本文引用的文献

1
Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability.
Mol Biol Cell. 2007 Jul;18(7):2678-86. doi: 10.1091/mbc.e07-01-0006. Epub 2007 May 2.
2
New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
FEMS Yeast Res. 2006 Mar;6(2):171-6. doi: 10.1111/j.1567-1364.2006.00036.x.
3
The synthetic genetic interaction spectrum of essential genes.
Nat Genet. 2005 Oct;37(10):1147-52. doi: 10.1038/ng1640. Epub 2005 Sep 11.
4
Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11290-5. doi: 10.1073/pnas.0503836102. Epub 2005 Jul 22.
5
tRNA actively shuttles between the nucleus and cytosol in yeast.
Science. 2005 Jul 1;309(5731):140-2. doi: 10.1126/science.1113346. Epub 2005 May 19.
7
Genome-wide mRNA surveillance is coupled to mRNA export.
Genes Dev. 2004 Nov 1;18(21):2652-62. doi: 10.1101/gad.1241204. Epub 2004 Oct 15.
9
Global mapping of the yeast genetic interaction network.
Science. 2004 Feb 6;303(5659):808-13. doi: 10.1126/science.1091317.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验