Diana Marco A, Otsu Yo, Maton Gilliane, Collin Thibault, Chat Mireille, Dieudonné Stéphane
Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8544, Ecole Normale Supérieure, 75005 Paris, France.
J Neurosci. 2007 Apr 4;27(14):3823-38. doi: 10.1523/JNEUROSCI.4719-06.2007.
Cerebellar unipolar brush cells (UBCs) are glutamatergic interneurons that receive direct input from vestibular afferents in the form of a unique excitatory synapse on their dendritic brush. UBCs constitute independent relay lines for vestibular signals, and their inherent properties most likely determine how vestibular activity is encoded by the cerebellar cortex. We now demonstrate that UBCs are bimodal cells; they can either fire high-frequency bursts of action potentials when stimulated from hyperpolarized potentials or discharge tonically during sustained depolarizations. The two functional states can be triggered by physiological-like activity of the excitatory input and are encoded by distinct Ca2+-signaling systems. By combining complementary strategies, consisting of molecular and electrophysiological analysis and of ultrafast acousto-optical deflector-based two-photon imaging, we unraveled the identity and the subcellular localization of the Ca2+ conductances activating in each mode. Fast inactivating T-type Ca2+ channels produce low-threshold spikes, which trigger the high-frequency bursts and generate powerful Ca2+ transients in the brush and, to a much lesser extent, in the soma. The tonic firing mode is encoded by a signalization system principally composed of L-type channels. Ca2+ influx during tonic firing produces a linear representation of the spike rate of the cell in the form of a widespread and sustained Ca2+ concentration increase and regulates cellular excitability via BK potassium channels. The bimodal firing pattern of UBCs may underlie different coding strategies of the vestibular input by the cerebellum, thus likely increasing the computational power of this structure.
小脑单极刷状细胞(UBCs)是谷氨酸能中间神经元,它们通过树突刷上独特的兴奋性突触接受前庭传入神经的直接输入。UBCs构成了前庭信号的独立中继线路,其固有特性很可能决定了前庭活动如何由小脑皮质进行编码。我们现在证明UBCs是双峰细胞;当从超极化电位刺激时,它们可以发放高频动作电位爆发,或者在持续去极化期间持续放电。这两种功能状态可由兴奋性输入的类似生理活动触发,并由不同的Ca2+信号系统编码。通过结合分子和电生理分析以及基于超快声光偏转器的双光子成像等互补策略,我们揭示了在每种模式下激活的Ca2+电导的特性和亚细胞定位。快速失活的T型Ca2+通道产生低阈值尖峰,触发高频爆发,并在刷状结构中产生强大的Ca2+瞬变,在胞体中产生的程度要小得多。持续放电模式由主要由L型通道组成的信号系统编码。持续放电期间的Ca2+内流以广泛且持续的Ca2+浓度增加的形式产生细胞放电频率的线性表示,并通过BK钾通道调节细胞兴奋性。UBCs的双峰放电模式可能是小脑对前庭输入进行不同编码策略的基础,从而可能增加该结构的计算能力。