Suppr超能文献

通过 EEG 源空间的公共空间模式滤波器对运动想象进行解码。

Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space.

机构信息

Biomedical Electronics Robotics and Devices (BERD) Group, Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece.

Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece.

出版信息

Comput Intell Neurosci. 2018 Aug 1;2018:7957408. doi: 10.1155/2018/7957408. eCollection 2018.

Abstract

Brain-Computer Interface (BCI) is a rapidly developing technology that aims to support individuals suffering from various disabilities and, ultimately, improve everyday quality of life. Sensorimotor rhythm-based BCIs have demonstrated remarkable results in controlling virtual or physical external devices but they still face a number of challenges and limitations. Main challenges include multiple degrees-of-freedom control, accuracy, and robustness. In this work, we develop a multiclass BCI decoding algorithm that uses electroencephalography (EEG) source imaging, a technique that maps scalp potentials to cortical activations, to compensate for low spatial resolution of EEG. Spatial features were extracted using Common Spatial Pattern (CSP) filters in the cortical source space from a number of selected Regions of Interest (ROIs). Classification was performed through an ensemble model, based on individual ROI classification models. The evaluation was performed on the BCI Competition IV dataset 2a, which features 4 motor imagery classes from 9 participants. Our results revealed a mean accuracy increase of 5.6% with respect to the conventional application method of CSP on sensors. Neuroanatomical constraints and prior neurophysiological knowledge play an important role in developing source space-based BCI algorithms. Feature selection and classifier characteristics of our implementation will be explored to raise performance to current state-of-the-art.

摘要

脑机接口(BCI)是一项快速发展的技术,旨在为各种残疾人士提供支持,并最终提高日常生活质量。基于感觉运动节律的 BCI 在控制虚拟或物理外部设备方面已经取得了显著的成果,但它们仍然面临着许多挑战和局限性。主要挑战包括多自由度控制、准确性和鲁棒性。在这项工作中,我们开发了一种多类 BCI 解码算法,该算法使用脑电图(EEG)源成像技术,该技术将头皮电位映射到皮质激活,以补偿 EEG 空间分辨率低的问题。通过从多个选定的感兴趣区域(ROI)的皮质源空间中使用共同空间模式(CSP)滤波器提取空间特征。通过基于单个 ROI 分类模型的集成模型进行分类。评估是在 BCI 竞赛 IV 数据集 2a 上进行的,该数据集来自 9 名参与者的 4 个运动想象类。与传统的在传感器上应用 CSP 的方法相比,我们的结果显示平均准确率提高了 5.6%。神经解剖学约束和先验神经生理学知识在开发基于源的 BCI 算法中起着重要作用。我们将探索实现的特征选择和分类器特征,以提高性能达到当前的最新水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1449/6092991/6118a7cf0339/CIN2018-7957408.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验