Suppr超能文献

随机种群动力学中确定性不动点的爆破

Blowing-up of deterministic fixed points in stochastic population dynamics.

作者信息

Natiello Mario A, Solari Hernán G

机构信息

Center for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden.

出版信息

Math Biosci. 2007 Oct;209(2):319-35. doi: 10.1016/j.mbs.2007.02.002. Epub 2007 Feb 22.

Abstract

We discuss the stochastic dynamics of biological (and other) populations presenting a limit behaviour for large environments (called deterministic limit) and its relation with the dynamics in the limit. The discussion is circumscribed to linearly stable fixed points of the deterministic dynamics, and it is shown that the cases of extinction and non-extinction equilibriums present different features. Mainly, non-extinction equilibria have associated a region of stochastic instability surrounded by a region of stochastic stability. The instability region does not exist in the case of extinction fixed points, and a linear Lyapunov function can be associated with them. Stochastically sustained oscillations of two subpopulations are also discussed in the case of complex eigenvalues of the stability matrix of the deterministic system.

摘要

我们讨论了生物(及其他)种群的随机动力学,给出了大环境下的极限行为(称为确定性极限)及其与极限情况下动力学的关系。讨论局限于确定性动力学的线性稳定不动点,结果表明灭绝平衡和非灭绝平衡的情况呈现出不同特征。主要而言,非灭绝平衡有一个与之相关的随机不稳定区域,其周围是随机稳定区域。在灭绝不动点的情况下不存在不稳定区域,并且可以为它们关联一个线性李雅普诺夫函数。在确定性系统稳定性矩阵具有复特征值的情况下,还讨论了两个亚种群的随机持续振荡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验