Baxendale Peter H, Greenwood Priscilla E
Department of Mathematics, University of Southern California, Los Angeles, CA, USA.
J Math Biol. 2011 Sep;63(3):433-57. doi: 10.1007/s00285-010-0376-2. Epub 2010 Nov 13.
Simulations of models of epidemics, biochemical systems, and other bio-systems show that when deterministic models yield damped oscillations, stochastic counterparts show sustained oscillations at an amplitude well above the expected noise level. A characterization of damped oscillations in terms of the local linear structure of the associated dynamics is well known, but in general there remains the problem of identifying the stochastic process which is observed in stochastic simulations. Here we show that in a general limiting sense the stochastic path describes a circular motion modulated by a slowly varying Ornstein-Uhlenbeck process. Numerical examples are shown for the Volterra predator-prey model, Sel'kov's model for glycolysis, and a damped linear oscillator.
对流行病模型、生化系统及其他生物系统的模拟表明,当确定性模型产生阻尼振荡时,对应的随机模型会在远高于预期噪声水平的振幅下呈现持续振荡。根据相关动力学的局部线性结构对阻尼振荡进行表征是众所周知的,但一般来说,识别在随机模拟中观察到的随机过程仍然存在问题。在此我们表明,在一般极限意义下,随机路径描述了由一个缓慢变化的奥恩斯坦 - 乌伦贝克过程调制的圆周运动。给出了沃尔泰拉捕食者 - 猎物模型、塞尔科夫糖酵解模型和一个阻尼线性振荡器的数值示例。