Braun Andreas, Stenger Patrick C, Warriner Heidi E, Zasadzinski Joseph A, Lu Karen W, Taeusch H William
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
Biophys J. 2007 Jul 1;93(1):123-39. doi: 10.1529/biophysj.106.095513. Epub 2007 Apr 6.
Freeze-fracture transmission electron microscopy shows significant differences in the bilayer organization and fraction of water within the bilayer aggregates of clinical lung surfactants, which increases from Survanta to Curosurf to Infasurf. Albumin and serum inactivate all three clinical surfactants in vitro; addition of the nonionic polymers polyethylene glycol, dextran, or hyaluronic acid also reduces inactivation in all three. Freeze-fracture transmission electron microscopy shows that polyethylene glycol, hyaluronic acid, and albumin do not adsorb to the surfactant aggregates, nor do these macromolecules penetrate the interior water compartments of the surfactant aggregates. This results in an osmotic pressure difference that dehydrates the bilayer aggregates, causing a decrease in the bilayer spacing as shown by small angle x-ray scattering and an increase in the ordering of the bilayers as shown by freeze-fracture electron microscopy. Small angle x-ray diffraction shows that the relationship between the bilayer spacing and the imposed osmotic pressure for Curosurf is a screened electrostatic interaction with a Debye length consistent with the ionic strength of the solution. The variation in surface tension due to surfactant adsorption measured by the pulsating bubble method shows that the extent of surfactant aggregate reorganization does not correlate with the maximum or minimum surface tension achieved with or without serum in the subphase. Albumin, polymers, and their mixtures alter the surfactant aggregate microstructure in the same manner; hence, neither inhibition reversal due to added polymer nor inactivation due to albumin is caused by alterations in surfactant microstructure.
冷冻断裂透射电子显微镜显示,临床肺表面活性剂双层聚集体的双层组织和双层内水的比例存在显著差异,从固尔苏到珂立苏再到英孚美,这种差异逐渐增大。白蛋白和血清在体外可使所有三种临床表面活性剂失活;添加非离子聚合物聚乙二醇、右旋糖酐或透明质酸也能降低这三种表面活性剂的失活程度。冷冻断裂透射电子显微镜显示,聚乙二醇、透明质酸和白蛋白不会吸附到表面活性剂聚集体上,这些大分子也不会穿透表面活性剂聚集体内部的水相区室。这会导致渗透压差异,使双层聚集体脱水,如小角X射线散射所示,双层间距减小,如冷冻断裂电子显微镜所示,双层的有序性增加。小角X射线衍射显示,珂立苏的双层间距与外加渗透压之间的关系是一种屏蔽静电相互作用,德拜长度与溶液的离子强度一致。用脉动气泡法测量的表面活性剂吸附引起的表面张力变化表明,表面活性剂聚集体的重组程度与在亚相中有无血清时达到的最大或最小表面张力无关。白蛋白、聚合物及其混合物以相同方式改变表面活性剂聚集体的微观结构;因此,添加聚合物导致的抑制逆转或白蛋白导致的失活都不是由表面活性剂微观结构的改变引起的。