Suppr超能文献

白蛋白、血清和聚合物对临床肺表面活性剂微观结构影响的冷冻断裂透射电子显微镜和小角X射线衍射研究

A freeze-fracture transmission electron microscopy and small angle x-ray diffraction study of the effects of albumin, serum, and polymers on clinical lung surfactant microstructure.

作者信息

Braun Andreas, Stenger Patrick C, Warriner Heidi E, Zasadzinski Joseph A, Lu Karen W, Taeusch H William

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.

出版信息

Biophys J. 2007 Jul 1;93(1):123-39. doi: 10.1529/biophysj.106.095513. Epub 2007 Apr 6.

Abstract

Freeze-fracture transmission electron microscopy shows significant differences in the bilayer organization and fraction of water within the bilayer aggregates of clinical lung surfactants, which increases from Survanta to Curosurf to Infasurf. Albumin and serum inactivate all three clinical surfactants in vitro; addition of the nonionic polymers polyethylene glycol, dextran, or hyaluronic acid also reduces inactivation in all three. Freeze-fracture transmission electron microscopy shows that polyethylene glycol, hyaluronic acid, and albumin do not adsorb to the surfactant aggregates, nor do these macromolecules penetrate the interior water compartments of the surfactant aggregates. This results in an osmotic pressure difference that dehydrates the bilayer aggregates, causing a decrease in the bilayer spacing as shown by small angle x-ray scattering and an increase in the ordering of the bilayers as shown by freeze-fracture electron microscopy. Small angle x-ray diffraction shows that the relationship between the bilayer spacing and the imposed osmotic pressure for Curosurf is a screened electrostatic interaction with a Debye length consistent with the ionic strength of the solution. The variation in surface tension due to surfactant adsorption measured by the pulsating bubble method shows that the extent of surfactant aggregate reorganization does not correlate with the maximum or minimum surface tension achieved with or without serum in the subphase. Albumin, polymers, and their mixtures alter the surfactant aggregate microstructure in the same manner; hence, neither inhibition reversal due to added polymer nor inactivation due to albumin is caused by alterations in surfactant microstructure.

摘要

冷冻断裂透射电子显微镜显示,临床肺表面活性剂双层聚集体的双层组织和双层内水的比例存在显著差异,从固尔苏到珂立苏再到英孚美,这种差异逐渐增大。白蛋白和血清在体外可使所有三种临床表面活性剂失活;添加非离子聚合物聚乙二醇、右旋糖酐或透明质酸也能降低这三种表面活性剂的失活程度。冷冻断裂透射电子显微镜显示,聚乙二醇、透明质酸和白蛋白不会吸附到表面活性剂聚集体上,这些大分子也不会穿透表面活性剂聚集体内部的水相区室。这会导致渗透压差异,使双层聚集体脱水,如小角X射线散射所示,双层间距减小,如冷冻断裂电子显微镜所示,双层的有序性增加。小角X射线衍射显示,珂立苏的双层间距与外加渗透压之间的关系是一种屏蔽静电相互作用,德拜长度与溶液的离子强度一致。用脉动气泡法测量的表面活性剂吸附引起的表面张力变化表明,表面活性剂聚集体的重组程度与在亚相中有无血清时达到的最大或最小表面张力无关。白蛋白、聚合物及其混合物以相同方式改变表面活性剂聚集体的微观结构;因此,添加聚合物导致的抑制逆转或白蛋白导致的失活都不是由表面活性剂微观结构的改变引起的。

相似文献

2
Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental.
Biophys J. 2005 Sep;89(3):1769-79. doi: 10.1529/biophysj.105.062620. Epub 2005 May 27.
3
Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions.
Soft Matter. 2021 May 26;17(20):5170-5182. doi: 10.1039/d1sm00337b.
4
Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol.
Colloids Surf B Biointerfaces. 2008 Apr 1;62(2):243-9. doi: 10.1016/j.colsurfb.2007.10.009. Epub 2007 Oct 24.
5
Kinematic viscosity of therapeutic pulmonary surfactants with added polymers.
Biochim Biophys Acta. 2009 Mar;1788(3):632-7. doi: 10.1016/j.bbamem.2009.01.005.
6
Properties of mixed monolayers of clinical lung surfactant, serum albumin and hydrophilic polymers.
Colloids Surf B Biointerfaces. 2013 Jan 1;101:135-42. doi: 10.1016/j.colsurfb.2012.05.038. Epub 2012 Jun 15.
7
Hyaluronan with dextran added to therapeutic lung surfactants improves effectiveness in vitro and in vivo.
Exp Lung Res. 2013 May-Jun;39(4-5):191-200. doi: 10.3109/01902148.2013.791893. Epub 2013 May 3.
8
Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability.
Biochim Biophys Acta. 2010 Apr;1798(4):801-28. doi: 10.1016/j.bbamem.2009.12.010. Epub 2009 Dec 22.
9
Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory.
Biophys J. 2005 Sep;89(3):1621-9. doi: 10.1529/biophysj.105.062646. Epub 2005 Jul 8.
10
Competitive adsorption: a physical model for lung surfactant inactivation.
Langmuir. 2009 Jul 21;25(14):8131-43. doi: 10.1021/la8039434.

引用本文的文献

1
Thermodynamic and Structural Study of Budesonide-Exogenous Lung Surfactant System.
Int J Mol Sci. 2024 Mar 4;25(5):2990. doi: 10.3390/ijms25052990.
2
Lung surfactant as a biophysical assay for inhalation toxicology.
Curr Res Toxicol. 2022 Dec 23;4:100101. doi: 10.1016/j.crtox.2022.100101. eCollection 2023.
4
Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions.
Soft Matter. 2021 May 26;17(20):5170-5182. doi: 10.1039/d1sm00337b.
6
Seventy-Five Years of Research on Protein Binding.
Antimicrob Agents Chemother. 2018 Jan 25;62(2). doi: 10.1128/AAC.01663-17. Print 2018 Feb.
7
Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity.
Biophys J. 2015 Dec 1;109(11):2295-306. doi: 10.1016/j.bpj.2015.10.022.
8
Effect of cholesterol nanodomains on monolayer morphology and dynamics.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):E3054-60. doi: 10.1073/pnas.1303304110. Epub 2013 Jul 30.
9
Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.
Theranostics. 2013 May 20;3(6):409-19. doi: 10.7150/thno.5616. Print 2013.
10
Role of airway recruitment and derecruitment in lung injury.
Crit Rev Biomed Eng. 2011;39(4):297-317. doi: 10.1615/critrevbiomedeng.v39.i4.40.

本文引用的文献

5
Hyaluronan reduces surfactant inhibition and improves rat lung function after meconium injury.
Pediatr Res. 2005 Aug;58(2):206-10. doi: 10.1203/01.PDR.0000169981.06266.3E. Epub 2005 Jul 31.
7
Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory.
Biophys J. 2005 Sep;89(3):1621-9. doi: 10.1529/biophysj.105.062646. Epub 2005 Jul 8.
8
Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental.
Biophys J. 2005 Sep;89(3):1769-79. doi: 10.1529/biophysj.105.062620. Epub 2005 May 27.
9
Overview of surfactant replacement trials.
J Perinatol. 2005 May;25 Suppl 2:S40-4. doi: 10.1038/sj.jp.7211320.
10
Dextran or polyethylene glycol added to curosurf for treatment of meconium lung injury in rats.
Biol Neonate. 2005;88(1):46-53. doi: 10.1159/000084458. Epub 2005 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验