Suppr超能文献

落基山岩内微生物生态系统的系统发育组成。

Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems.

作者信息

Walker Jeffrey J, Pace Norman R

机构信息

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.

出版信息

Appl Environ Microbiol. 2007 Jun;73(11):3497-504. doi: 10.1128/AEM.02656-06. Epub 2007 Apr 6.

Abstract

The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems.

摘要

内岩环境,即岩石中的孔隙空间,是一种普遍存在的微生物栖息地。基于光合作用的内岩群落栖息在暴露于地表的岩石外层几毫米到几厘米处。这种内岩生态系统已被提议作为理解微生物生态学基本原理的简单、易处理的模型。为了检验先前关于内岩生态系统的设想假设,我们使用非培养分子方法研究了美国落基山地区选定的内岩群落。通过测定rRNA基因序列含量来确定群落组成,并使用统计系统发育方法对群落进行比较。结果表明,内岩生态系统源自一个经过挑选的全球集合群落,并形成了真正的生态群落,这些群落是已知最简单的微生物生态系统之一。统计分析表明,控制群落组成的生物地理特征,如岩石类型,比预期的更为复杂。总体而言,这项研究的结果支持了这样一种观点,即在内岩群落中发现的微生物多样性模式受与宏观生态系统中观察到的原理相似的原理支配。

相似文献

1
Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems.
Appl Environ Microbiol. 2007 Jun;73(11):3497-504. doi: 10.1128/AEM.02656-06. Epub 2007 Apr 6.
2
Endolithic microbial ecosystems.
Annu Rev Microbiol. 2007;61:331-47. doi: 10.1146/annurev.micro.61.080706.093302.
5
Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland).
Microb Ecol. 2009 Aug;58(2):290-306. doi: 10.1007/s00248-008-9483-7. Epub 2009 Jan 28.
6
Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.
Environ Microbiol. 2008 Dec;10(12):3388-403. doi: 10.1111/j.1462-2920.2008.01746.x.
9
Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.
Appl Microbiol Biotechnol. 2011 Sep;91(6):1659-75. doi: 10.1007/s00253-011-3354-8. Epub 2011 Jun 3.
10
Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.
Environ Microbiol. 2009 Mar;11(3):715-28. doi: 10.1111/j.1462-2920.2009.01859.x.

引用本文的文献

1
Expanding the cultivable human archaeome: sp. nov. and strain 'GRAZ-2' from human faeces.
Int J Syst Evol Microbiol. 2025 Apr;75(4). doi: 10.1099/ijsem.0.006751.
3
Microbial colonization of gypsum: from the fossil record to the present day.
Front Microbiol. 2024 Aug 20;15:1397437. doi: 10.3389/fmicb.2024.1397437. eCollection 2024.
4
Phylogenetic and morphological re-evaluation of Camptophora.
Antonie Van Leeuwenhoek. 2024 Jul 31;117(1):109. doi: 10.1007/s10482-024-01990-w.
6
Patterns and drivers of microbiome in different rock surface soil under the volcanic extreme environment.
Imeta. 2023 Jun 19;2(3):e122. doi: 10.1002/imt2.122. eCollection 2023 Aug.
7

本文引用的文献

1
Endolithic blue-green algae in the dry valleys: primary producers in the antarctic desert ecosystem.
Science. 1976 Sep 24;193(4259):1247-9. doi: 10.1126/science.193.4259.1247.
2
Endolithic microorganisms in the antarctic cold desert.
Science. 1982 Feb 26;215(4536):1045-53. doi: 10.1126/science.215.4536.1045.
3
Archaea predominate among ammonia-oxidizing prokaryotes in soils.
Nature. 2006 Aug 17;442(7104):806-9. doi: 10.1038/nature04983.
4
UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context.
BMC Bioinformatics. 2006 Aug 7;7:371. doi: 10.1186/1471-2105-7-371.
5
NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W394-9. doi: 10.1093/nar/gkl244.
6
Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat.
Appl Environ Microbiol. 2006 May;72(5):3685-95. doi: 10.1128/AEM.72.5.3685-3695.2006.
7
Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6442-7. doi: 10.1073/pnas.0510157103. Epub 2006 Apr 13.
8
UniFrac: a new phylogenetic method for comparing microbial communities.
Appl Environ Microbiol. 2005 Dec;71(12):8228-35. doi: 10.1128/AEM.71.12.8228-8235.2005.
9
Phylogenetic diversity and ecology of environmental Archaea.
Curr Opin Microbiol. 2005 Dec;8(6):638-42. doi: 10.1016/j.mib.2005.10.003.
10
Bias and artifacts in multitemplate polymerase chain reactions (PCR).
J Biosci Bioeng. 2003;96(4):317-23. doi: 10.1016/S1389-1723(03)90130-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验