Callow P, Sukhodub A, Taylor James E N, Kneale G G
EPSAM and ISTM Research Institutes, Keele University, Staffordshire ST5 5BG, UK; ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, Institut Laue Langevin, 38042 Grenoble Cedex 9, Grenoble, France.
Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DT, UK.
J Mol Biol. 2007 May 25;369(1):177-185. doi: 10.1016/j.jmb.2007.03.012. Epub 2007 Mar 14.
Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry MS and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of H:H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R) and maximum dimensions (D) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R=35 A and D=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds.
I型限制-修饰(R-M)系统编码多亚基/多结构域酶。形成甲基转移酶(MTase)需要两个基因(M和S),该甲基转移酶会甲基化识别序列内的特定碱基,并保护DNA不被核酸内切酶切割。DNA甲基转移酶M.AhdI是一种170 kDa的四聚体,化学计量比为MS,具有I型MTase的典型特性。已经制备了带有氘代S亚基的M.AhdI酶,以便使用小角中子散射(SANS)方法进行对比变化。在多种H:H溶剂对比度下收集SANS数据,以匹配多亚基酶中的一个或另一个亚基。多亚基酶中M亚基原位的回转半径(R)和最大尺寸(D)(分别为50 Å和190 Å)与整个MTase的相近(51 Å和190 Å)。相比之下,S亚基原位的实验测定值为R = 35 Å和D = 110 Å,表明它们在酶中的位置更靠近中心。从头重建方法产生了M.AhdI形状和亚基组织的低分辨率结构模型,其中可以辨别出S亚基二聚体的Z形结构。相比之下,M亚基形成了一个长得多且更伸展的结构。MTase的核心由两个S亚基和两个M亚基的球状区域组成,M亚基的延伸部分很可能在外部末端形成高度可移动的区域,当MTase结合时,这些区域会围绕DNA折叠。