Suppr超能文献

超越连续时间多状态马尔可夫模型的时间齐次性。

Beyond time-homogeneity for continuous-time multistate Markov models.

作者信息

Kendall Emmett B, Williams Jonathan P, Hermansen Gudmund H, Bois Frederic, Thanh Vo Hong

机构信息

Department of Statistics, North Carolina State University.

Centre for Advanced Study, Norwegian Academy of Science and Letters.

出版信息

J Comput Graph Stat. 2025;34(2):668-682. doi: 10.1080/10618600.2024.2388609. Epub 2024 Sep 30.

Abstract

Multistate Markov models are a canonical parametric approach for data modeling of observed or latent stochastic processes supported on a finite state space. Continuous-time Markov processes describe data that are observed irregularly over time, as is often the case in longitudinal medical data, for example. Assuming that a continuous-time Markov process is time-homogeneous, a closed-form likelihood function can be derived from the Kolmogorov forward equations - a system of differential equations with a well-known matrix-exponential solution. Unfortunately, however, the forward equations do not admit an analytical solution for continuous-time, time- Markov processes, and so researchers and practitioners often make the simplifying assumption that the process is piecewise time-homogeneous. In this paper, we provide intuitions and illustrations of the potential biases for parameter estimation that may ensue in the more realistic scenario that the piecewise-homogeneous assumption is violated, and we advocate for a solution for likelihood computation in a truly time-inhomogeneous fashion. Particular focus is afforded to the context of multistate Markov models that allow for state label misclassifications, which applies more broadly to hidden Markov models (HMMs), and Bayesian computations bypass the necessity for computationally demanding numerical gradient approximations for obtaining maximum likelihood estimates (MLEs). Supplemental materials are available online.

摘要

多状态马尔可夫模型是一种典型的参数方法,用于对有限状态空间上的观测或潜在随机过程进行数据建模。连续时间马尔可夫过程描述随时间不规则观测的数据,例如在纵向医学数据中经常出现这种情况。假设连续时间马尔可夫过程是时间齐次的,则可以从柯尔莫哥洛夫前向方程导出一个闭式似然函数,柯尔莫哥洛夫前向方程是一个具有著名矩阵指数解的微分方程组。然而,不幸的是,对于连续时间、时间马尔可夫过程,前向方程不存在解析解,因此研究人员和从业者通常做出简化假设,即该过程是分段时间齐次的。在本文中,我们给出了在违反分段齐次假设这种更现实的情况下,参数估计可能产生的潜在偏差的直观解释和示例,并主张以真正时间非齐次的方式进行似然计算的解决方案。特别关注了允许状态标签错误分类的多状态马尔可夫模型的背景,这更广泛地适用于隐马尔可夫模型(HMM),并且贝叶斯计算绕过了为获得最大似然估计(MLE)而进行计算量大的数值梯度近似的必要性。补充材料可在线获取。

相似文献

1
Beyond time-homogeneity for continuous-time multistate Markov models.超越连续时间多状态马尔可夫模型的时间齐次性。
J Comput Graph Stat. 2025;34(2):668-682. doi: 10.1080/10618600.2024.2388609. Epub 2024 Sep 30.
10
A Model of Indel Evolution by Finite-State, Continuous-Time Machines.有限状态连续时间机器的插入缺失进化模型。
Genetics. 2020 Dec;216(4):1187-1204. doi: 10.1534/genetics.120.303630. Epub 2020 Oct 5.

本文引用的文献

8
A comparison of time-homogeneous Markov chain and Markov process multi-state models.齐次马尔可夫链与马尔可夫过程多状态模型的比较。
Commun Stat Case Stud Data Anal Appl. 2016;2(3-4):92-100. doi: 10.1080/23737484.2017.1361366. Epub 2017 Aug 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验