Suppr超能文献

一种用于避免在空气污染时间序列研究的广义相加模型中协曲度影响的自助法。

A bootstrap method to avoid the effect of concurvity in generalised additive models in time series studies of air pollution.

作者信息

Figueiras Adolfo, Roca-Pardiñas Javier, Cadarso-Suárez Carmen

机构信息

Department of Preventive Medicine, University of Santiago de Compostela, Spain.

出版信息

J Epidemiol Community Health. 2005 Oct;59(10):881-4. doi: 10.1136/jech.2004.026740.

Abstract

BACKGROUND

In recent years a great number of studies have applied generalised additive models (GAMs) to time series data to estimate the short term health effects of air pollution. Lately, however, it has been found that concurvity--the non-parametric analogue of multicollinearity--might lead to underestimation of standard errors of the effects of independent variables. Underestimation of standard errors means that for concurvity levels commonly present in the data, the risk of committing type I error rises by over threefold.

METHODS

This study developed a conditional bootstrap methology that consists of assuming that the outcome in any observation is conditional upon the values of the set of independent variables used. It then tested this procedure by means of a simulation study using a Poisson additive model. The response variable of this model is a function of an unobserved confounding variable (that introduces trend and seasonality), real black smoke data, and temperature. Scenarios were created with different coefficients and degrees of concurvity.

RESULTS

Conditional bootstrap provides confidence intervals with coverages close to nominal (95%), irrespective of the degree of concurvity, number of variables in the model or magnitude of the coefficient to be estimated (for example, for a concurvity of 0.85, bootstrap confidence interval coverage is 95% compared with 71% in the case of the asymptotic interval obtained directly with S-plus gam function).

CONCLUSIONS

The bootstrap method avoids the problem of concurvity in time series studies of air pollution, and is easily generalised to non-linear dose-risk effects. All bootstrap calculations described in this paper can be performed using S-Plus gam.boot software.

摘要

背景

近年来,大量研究将广义相加模型(GAMs)应用于时间序列数据,以估计空气污染对健康的短期影响。然而,最近发现,共线性(多共线性的非参数类似物)可能导致对自变量效应标准误差的低估。标准误差的低估意味着,对于数据中常见的共线性水平,犯I型错误的风险增加了三倍多。

方法

本研究开发了一种条件自助法,该方法假设任何观测值的结果取决于所使用的自变量集的值。然后,通过使用泊松相加模型的模拟研究对该程序进行了测试。该模型的响应变量是一个未观测到的混杂变量(引入趋势和季节性)、实际黑烟数据和温度的函数。创建了具有不同系数和共线性程度的情景。

结果

无论共线性程度、模型中的变量数量或待估计系数的大小如何,条件自助法提供的置信区间覆盖率接近名义值(95%)(例如,对于共线性为0.85的情况,自助置信区间覆盖率为95%,而直接使用S-plus gam函数获得的渐近区间的覆盖率为71%)。

结论

自助法避免了空气污染时间序列研究中共线性的问题,并且很容易推广到非线性剂量-风险效应。本文描述的所有自助计算都可以使用S-Plus gam.boot软件进行。

相似文献

本文引用的文献

9
Risk set sampling for case-crossover designs.病例交叉设计的风险集抽样
Epidemiology. 2002 Jan;13(1):100-5. doi: 10.1097/00001648-200201000-00016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验