Plassmann W, Kadel M
Zoological Institute, J.W. Goethe-University, Frankfurt, FRG.
Brain Behav Evol. 1991;38(2-3):115-26. doi: 10.1159/000114382.
The contribution of the bulla to low-frequency hearing capability was studied in the gerbilline rodent Pachyuromys duprasi. In the frequency range of 0.6-3 kHz, the sound pressure behind the tympanic membrane is higher than the pressure in the meatus acusticus externus near the eardrum. Gradual augmentation of frequencies above 0.6 kHz gives rise to steadily increasing phase lag in the bulla relative to that in the meatus. Severing of the incudostapedial joint yields results indicating that the phase difference between meatus and bulla is caused by resonance properties of the bulla and resistance in the cochlea. Both destruction of the bulla and stiffening of the pars flaccida tympani lead to a sound pressure decrease in the frequency range around 2 kHz. This drop is accompanied by an amplitude decrease of the same magnitude in the cochlear microphonic potentials. These results support the hypothesis that the bulla functions like a Helmholtz resonator in the frequency range of 1-3 kHz, improving sound transduction to the cochlea. These experimental findings, in conjunction with theoretical considerations involving bulla volume, orifice area of the resonator, and resonance frequency of the bulla, suggest that the theoretically required area of the resonator's orifice is, in fact, of the same magnitude as the area of the pars flaccida tympani. The middle-ear system of P. duprasi thus consists of a resonating bulla in which the area of the pars flaccida tympani constitutes the resonator's opening towards the meatus and in which the pars tensa tympani functions as a pressure gradient receiver, due to phase differences caused by the resistance of the cochlea and by the resonance properties of the bulla. By these functional principles the peripheral auditory system of P. duprasi is capable of low-frequency perception despite the smallness of its structures. The middle ear in P. duprasi thus represents a prime example of a strategy: the dimensional constraints derived from a general bauplan for the peripheral auditory system have here been overcome.