Suppr超能文献

相似文献

1
Coherent neural representation of hand speed in humans revealed by MEG imaging.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7676-81. doi: 10.1073/pnas.0609632104. Epub 2007 Apr 18.
2
Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
Brain Res. 2016 Nov 1;1650:252-266. doi: 10.1016/j.brainres.2016.09.011. Epub 2016 Sep 15.
3
Neuronal network coherent with hand kinematics during fast repetitive hand movements.
Neuroimage. 2012 Jan 16;59(2):1684-91. doi: 10.1016/j.neuroimage.2011.09.022. Epub 2011 Sep 22.
5
Imaging the human motor system's beta-band synchronization during isometric contraction.
Neuroimage. 2008 Jun;41(2):437-47. doi: 10.1016/j.neuroimage.2008.01.045. Epub 2008 Feb 12.
6
The cerebral oscillatory network of parkinsonian resting tremor.
Brain. 2003 Jan;126(Pt 1):199-212. doi: 10.1093/brain/awg022.
7
Selective movement preparation is subserved by selective increases in corticomuscular gamma-band coherence.
J Neurosci. 2011 May 4;31(18):6750-8. doi: 10.1523/JNEUROSCI.4882-10.2011.
8
Movement-induced uncoupling of primary sensory and motor areas in focal task-specific hand dystonia.
Neuroscience. 2013 Oct 10;250:434-45. doi: 10.1016/j.neuroscience.2013.07.027. Epub 2013 Jul 20.
9
Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral brain lesions.
Neuroimage. 2007 Oct 1;37(4):1301-14. doi: 10.1016/j.neuroimage.2007.05.053. Epub 2007 Jun 12.
10
Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles.
J Physiol. 1999 Apr 15;516 ( Pt 2)(Pt 2):559-70. doi: 10.1111/j.1469-7793.1999.0559v.x.

引用本文的文献

2
Recognition of brain activities via graph-based long short-term memory-convolutional neural network.
Front Neurosci. 2025 Mar 24;19:1546559. doi: 10.3389/fnins.2025.1546559. eCollection 2025.
3
Decoding of movement-related cortical potentials at different speeds.
Cogn Neurodyn. 2024 Dec;18(6):3859-3872. doi: 10.1007/s11571-024-10164-3. Epub 2024 Sep 1.
4
An efficient grasping shared control architecture for unpredictable and unspecified tasks.
Front Neurorobot. 2024 Sep 11;18:1429952. doi: 10.3389/fnbot.2024.1429952. eCollection 2024.
5
EMG-projected MEG high-resolution source imaging of human motor execution: Brain-muscle coupling above movement frequencies.
Imaging Neurosci (Camb). 2024 Jan 9;2:1-20. doi: 10.1162/imag_a_00056. eCollection 2024 Jan 1.
6
Human local field potentials in motor and non-motor brain areas encode upcoming movement direction.
Commun Biol. 2024 Apr 27;7(1):506. doi: 10.1038/s42003-024-06151-3.
7
Submovement interpersonal coupling is associated to audio-motor coordination performance.
Sci Rep. 2024 Feb 26;14(1):4662. doi: 10.1038/s41598-024-51629-z.
8
The microstructure of intra- and interpersonal coordination.
Proc Biol Sci. 2023 Nov 29;290(2011):20231576. doi: 10.1098/rspb.2023.1576. Epub 2023 Nov 15.
9
Interacting humans use forces in specific frequencies to exchange information by touch.
Sci Rep. 2022 Sep 21;12(1):15752. doi: 10.1038/s41598-022-19500-1.
10
Topological changes of brain network during mindfulness meditation: an exploratory source level magnetoencephalographic study.
AIMS Neurosci. 2022 May 7;9(2):250-263. doi: 10.3934/Neuroscience.2022013. eCollection 2022.

本文引用的文献

1
Encoding of movement direction in different frequency ranges of motor cortical local field potentials.
J Neurosci. 2005 Sep 28;25(39):8815-24. doi: 10.1523/JNEUROSCI.0816-05.2005.
2
Cortical local field potential encodes movement intentions in the posterior parietal cortex.
Neuron. 2005 Apr 21;46(2):347-54. doi: 10.1016/j.neuron.2005.03.004.
3
Normal and pathological oscillatory communication in the brain.
Nat Rev Neurosci. 2005 Apr;6(4):285-96. doi: 10.1038/nrn1650.
4
Neuronal coherence as a mechanism of effective corticospinal interaction.
Science. 2005 Apr 1;308(5718):111-3. doi: 10.1126/science.1107027.
5
A comparison of random field theory and permutation methods for the statistical analysis of MEG data.
Neuroimage. 2005 Apr 1;25(2):383-94. doi: 10.1016/j.neuroimage.2004.09.040.
6
Selecting the signals for a brain-machine interface.
Curr Opin Neurobiol. 2004 Dec;14(6):720-6. doi: 10.1016/j.conb.2004.10.005.
7
Parietal representation of hand velocity in a copy task.
J Neurophysiol. 2005 Jan;93(1):508-18. doi: 10.1152/jn.00357.2004. Epub 2004 Jul 21.
8
Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9849-54. doi: 10.1073/pnas.0308538101. Epub 2004 Jun 21.
9
Cerebellar activation during copying geometrical shapes.
J Neurophysiol. 2003 Dec;90(6):3874-87. doi: 10.1152/jn.00009.2003.
10
Synchronous cortical oscillatory activity during motor action.
Curr Opin Neurobiol. 2003 Dec;13(6):678-84. doi: 10.1016/j.conb.2003.10.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验