Suppr超能文献

基于图的长短期记忆卷积神经网络对大脑活动的识别

Recognition of brain activities via graph-based long short-term memory-convolutional neural network.

作者信息

Yang Yanling, Zhao Helong, Hao Zezhou, Shi Cheng, Zhou Liang, Yao Xufeng

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.

出版信息

Front Neurosci. 2025 Mar 24;19:1546559. doi: 10.3389/fnins.2025.1546559. eCollection 2025.

Abstract

INTRODUCTION

Human brain activities are always difficult to recognize due to its diversity and susceptibility to disturbance. With its unique capability of measuring brain activities, magnetoencephalography (MEG), as a high temporal and spatial resolution neuroimaging technique, has been used to identify multi-task brain activities. Accurately and robustly classifying motor imagery (MI) and cognitive imagery (CI) from MEG signals is a significant challenge in the field of brain-computer interface (BCI).

METHODS

In this study, a graph-based long short-term memory-convolutional neural network (GLCNet) is proposed to classify the brain activities in MI and CI tasks. It was characterized by implementing three modules of graph convolutional network (GCN), spatial convolution and long short-term memory (LSTM) to effectively extract time-frequency-spatial features simultaneously. For performance evaluation, our method was compared with six benchmark algorithms of FBCSP, FBCNet, EEGNet, DeepConvNets, Shallow ConvNet and MEGNet on two public datasets of MEG-BCI and BCI competition IV dataset 3.

RESULTS

The results demonstrated that the proposed GLCNet outperformed other models with the average accuracies of 78.65% and 65.8% for two classification and four classification on the MEG-BCI dataset, respectively.

DISCUSSION

It was concluded that the GLCNet enhanced the model's adaptability in handling individual variability with robust performance. This would contribute to the exploration of brain activates in neuroscience.

摘要

引言

由于人类大脑活动的多样性以及易受干扰性,其活动总是难以识别。脑磁图(MEG)作为一种具有高时间和空间分辨率的神经成像技术,凭借其测量大脑活动的独特能力,已被用于识别多任务大脑活动。从脑磁图信号中准确且稳健地分类运动想象(MI)和认知想象(CI)是脑机接口(BCI)领域的一项重大挑战。

方法

在本研究中,提出了一种基于图的长短期记忆 - 卷积神经网络(GLCNet)来对MI和CI任务中的大脑活动进行分类。它的特点是实现了图卷积网络(GCN)、空间卷积和长短期记忆(LSTM)三个模块,以同时有效地提取时频空间特征。为了进行性能评估,我们的方法在MEG - BCI和BCI竞赛IV数据集3这两个公共数据集上与FBCSP、FBCNet、EEGNet、DeepConvNets、Shallow ConvNet和MEGNet这六种基准算法进行了比较。

结果

结果表明,所提出的GLCNet在MEG - BCI数据集上,对于二分类和四分类任务,平均准确率分别为78.65%和65.8%,优于其他模型。

讨论

得出的结论是,GLCNet通过稳健的性能增强了模型处理个体差异的适应性。这将有助于在神经科学中探索大脑活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca8d/11973346/33126e28b0bc/fnins-19-1546559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验